目前,美国国家航空航天局 (NASA) 的许多电子系统正在考虑使用高可靠性版本的商用现货区域阵列封装 (COTS AAP) 技术。尽管许多此类先进电子封装通常在封装内使用底部填充材料,包括倒装芯片 (FC) 芯片下方;但印刷电路板 (PCB) 级别可能还需要全部或部分角落底部填充材料,以提高组装可靠性,特别是在机械和疲劳负载下。由于 NASA 对材料和可靠性有严格的要求,因此对于使用底部填充材料的测试验证指南极其有限。为了准备开发测试矩阵和实施,我们对文献和当前实践以及可靠性问题进行了调查。
在本研究的第一阶段,对仪表旋启式止回阀进行了大量的测试,以确定阀瓣在各种上游流动扰动(弯头、减速器、蝶阀和多孔孔板作为高湍流源)下的稳定性,涵盖了两种不同阀门尺寸(3 英寸和 6 英寸)的各种阀瓣停止位置(50 到 75 度)和流速(高达 20 英尺/秒)。第一阶段的研究导致了上游流动扰动因素的发展,应将这些因素考虑在内,以确定实现稳定、完全打开的阀瓣位置所需的最小速度。测试矩阵还量化了当这些最小速度要求不满足时可能出现的阀瓣波动的严重程度。第一阶段研究的结果发表在 NUREG/CR-5159 中。
在本研究的第一阶段,对仪表旋启式止回阀进行了大量的测试,以确定阀瓣在各种上游流动扰动(弯头、减速器、蝶阀和多孔孔板作为高湍流源)下的稳定性,涵盖了两种不同阀门尺寸(3 英寸和 6 英寸)的各种阀瓣停止位置(50 到 75 度)和流速(高达 20 英尺/秒)。第一阶段的研究导致了上游流动扰动因素的发展,应将这些因素考虑在内,以确定实现稳定、完全打开的阀瓣位置所需的最小速度。测试矩阵还量化了当这些最小速度要求不满足时可能出现的阀瓣波动的严重程度。第一阶段研究的结果发表在 NUREG/CR-5159 中。
1. 介绍 ................................................................................................................ 1 1.1 背景 ...................................................................................................... 1 1.2 目标 .............................................................................................................. 2 2. 文献背景研究 .............................................................................................. 4 2.1 地面效应 ...................................................................................................... 4 2.2 Gurney 襟翼 ............................................................................................. 5 2.3 对比和比较 ............................................................................................. 8 3. 计算机程序 ...................................................................................................... 10 3.1 背景 ...................................................................................................... 10 3.2 XFoil ...................................................................................................... 11 3.3 JavaFoil ................................................................................................ 11 3.3.1 JavaFoil 背景 ............................................................................. 11 3.3.2 JavaFoil 和地面效应 ............................................................................. 12 3.3.3 JavaFoil 和 Gurney 襟翼的增加 ............................................................. 20 3.4 比较 XFoil 和 JavaFoil ...................................................................... 23 3.5 结合地面效应和 Gurney 襟翼 .............................................................. 24 4. 实验研究 ...................................................................................................... 26 4.1 概述 ...................................................................................................... 26 4.2 WSU 3×4 英尺风洞 ............................................................................. 26 4.3 二维测试 ............................................................................................. 27 4.4 模型 ...................................................................................................... 27 4.5 测试矩阵 ............................................................................................. 28 4.6 预期气动力 ............................................................................................. 29 4.7 预期不确定性或误差 ............................................................................. 31 4.7.1 施工误差 ............................................................................................. 32 4.7.2 风洞阻塞误差 ............................................................................. 32 4.7.3 安装误差................................................................................ 32
在欧洲旋翼机空气动力学和声学 (HELISHAPE) 大型合作研究计划的框架内,在 DNW 的开放测试部分进行了参数模型旋翼测试,使用 DLR 的 MWM 测试台和配备先进设计的叶片和两个可更换叶尖的全铰接式 ECF 旋翼的高度仪器化模型。一组叶尖 (7A) 为矩形,另一组 (7ADI) 为后掠抛物线/上反角形状。这项实验研究的目的是评估降噪技术(概念上通过改变旋翼速度、专用叶尖形状和先进的翼型,以及操作上通过确定低噪音 - BVI 最小化下降程序)并验证合作伙伴的空气动力学和声学代码。同时测量了叶片表面声学和气动压力数据以及叶片动力学和性能数据。此外,通过 LLS 流动可视化获得了有关尖端涡流几何形状和叶片涡流错开距离的宝贵信息。简要描述了实验设备、测试程序和测试矩阵。介绍了主要结果,并讨论了两个转子最重要的参数变化趋势。
定性方法 8 机载高速摄像机 8 追击飞机观察 8 地面摄像机 11 定量方法 12 摄影测量 12 储存遥测 13 安全分离标准 14 脱靶距离 15 储存稳定性 16 保险线/脐带功能 16 飞行测试业务 17 武器分离风洞技术 19 自由投掷 19 系留弹道系统 20 网格 22 流动角度 23 第 3 章:案例研究 25 风洞案例:GBU-38/B JDAM 弹药 25 MK-82 JDAM 风洞工作 28 风洞预测 28 飞行测试结果 30 滚转速率 31 脱靶距离 32 BRU-55 脐带缆故障 32 风洞的影响 35 滚转问题/翼片解锁时间 35 脱靶距离和相邻挂架几何形状 36 脐带缆 37 反对风洞的案例:GBU-24B/B 39 GBU-24B/B 低空激光制导炸弹 39 GBU-24B/B - F/A-18E/F 超级大黄蜂整合工作 40 风洞预测 41 测试矩阵 43 GBU-24 F/A-18A/B/C/D 大黄蜂分离计划 43
摘要 在高温和大电流条件下测试了晶圆级芯片规模封装 (WLCSP) 组件。在焊料/凸块下金属化 (UBM) 界面处观察到电迁移损坏以及加速扩散和金属间化合物生长。最终电气故障通常是由于 UBM 附近的再分布线 (RDL) 中产生空隙而发生的。温度升高、电流密度增加和 RDL 走线宽度减小会导致故障率增加。Ni UBM 焊盘和 Cu 柱结构的性能均优于 Cu UBM 焊盘。根据实验数据和其他已发表数据开发了基于 Black 方程的故障模型。然后使用该模型根据代表性现场使用条件制定加速测试和鉴定测试的推荐指南。关键词:WLCSP、电迁移。引言由于 WLCSP 外形小巧,已成为便携式产品应用中使用的 RF 降压转换器、相机闪光灯驱动器、背光驱动器和模拟开关等设备的流行封装。这些器件需要通过 BGA 焊点传输高达 2A 或更高的电流。由于电迁移导致的现场故障是限制给定器件最大额定电流的一个潜在因素。倒装芯片和 WLCSP 焊点中的电迁移故障是由于高电流密度驱动的扩散和金属间化合物反应在高温下加速而发生的 [1-34]。这些影响会产生空洞,这些空洞会随着时间的推移而打开和增长。随着空洞尺寸的增加,通过焊点的电阻会增加,最终出现开路。在大多数电迁移研究中,使用电流密度和温度的测试矩阵来比较设计或材料变量。测试通常会持续到给定支路中至少一半的单元发生故障,以便数据可以拟合对数正态分布或威布尔分布。一个典型目标是确定故障预测模型的常数,例如 Black 方程 [27]。
测定(ATA) - 仅RNA测序(RNA-Seq)最近采用的ICHQ5A(R2)指南“鼓励”基于下一代测序的方法替换体内病毒测试。它还指出,NGS可用于替代或补充体外病毒测试。已开发并提出了用于病毒测试的IDTECT®转录组方法,作为传统体内和体外测试方法的替代技术。Pathoquest的IDTECT®平台是GMP验证的方法,旨在替代动物在生产药物或生物技术产品中使用的细胞中使用的使用,这与3RS的替代,还原和改进的原理一致(1)。IDTECT®转录组与其他方法不同,因为它检测到在病毒感染细胞中表达的病毒RNA转录物,而不是靶向病毒颗粒中存在的病毒基因组。这种病毒转录阶段对于所有类型的病毒家族来说都是共同的,因此病毒转录本可以用作病毒感染的标志物。这种特定方法可以检测细胞中的病毒感染,可以很容易地从病毒核酸养育中分化而没有感染风险。根据ICH Q2,该测定法的验证策略包括满足药物要求的两个(2)个步骤;该方法最初由PathoQuest作为“通用平台测定”(步骤1)验证,并采用了后续方法(步骤2),以验证测定性能不会受到测试样本本身的任何潜在矩阵效应的负面影响。这些步骤在下面详细介绍。步骤1:用于此初始验证的材料是MRC-5细胞,无病毒细胞系(阴性对照)和由慢性感染EBV(B95-8细胞)组成的混合物结合了感染了MULV(RAMOS细胞)的细胞(阳性对照)。开发了感染的细胞模型是为了反映自然被各自病毒感染的宿主细胞,而不是将病毒颗粒直接刺激到测试矩阵中(人工尖峰)。感染的细胞模型更好地表示在病毒感染过程中合成的核酸的模式,包括使用Pathoquest的转录组方法检测到的病毒RNA转录物。