NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
2.4.1。液滴尺寸。用激光差异方法(Mastersizer 3000,Malvern Inc)测量了液滴尺寸及其大小分布。2.4.2。界面张力。使用dunoüy板法(BZY-2张力计,亨普仪器)测量油/水接口处的界面张力。2.4.3。zeta电位。在室温下,用痕量激光多普勒电溶剂方法(Zetasizernano Zs,Malvern Inc.)测量丙烯酸酯迷你乳液的Zeta电位。用水将样品稀释一百次,每个样品的pH在5处控制以防止pH干扰。对于每个样品,重复测量三次。2.4.4。sem。在3 kV加速电压下,通过扫描电子微拷贝(SEM)(RIGMA/VP,Carl Zeiss显微镜LTD)研究了带有或没有CNC的聚丙烯酸酯样品的形态。将聚丙烯酸酯乳液稀释一千次,掉在硅片上,在空气中干燥,放在平台上进行观察。
Ecosystem-based Management as a Tool for Sound Ocean Governance Professor Ronán Long (Director, WMU Sasakawa Global Ocean Institute) Oceans and Sustainable Development Professor Alexander Proelss (Director, International Foundation for the Law of the Sea IFLOS and Full Professor at the University of Hamburg) Climate Change International Legal Framework and its Implications in the Maritime Sector Professor Simone Borg (Ambassador for Malta on Climate马耳他大学的行动兼教授)海洋酸化与气候变化教授艾伦·迪顿(Alan Deidun)(国际海洋研究所马耳他培训中心主任)海平面上升和国际安全含义Antoine Grima博士(Malta大学法律学院环境和资源法系主管)
首届波士顿研究咨询小组(BRAG)报告于2016年发布,建议每三到五年更新一次关于波士顿气候变化风险因素的科学共识。Barr Foundation使此更新成为可能。大都市区规划委员会(MAPC)的Darci Schofield指出,Brag报告提供了对波士顿市以外许多城市和城镇有用和利用的必要信息,并建议在更新中汇编更本地化的信息。随后与Bud Ris,Mary Skelton Roberts,Emily Sidla和Barr Foundation的Kalila Barnett进行了讨论,导致研究区扩大,包括MAPC地区的101个城镇和城市。我们还感谢Schofield女士帮助招募GBRAG指导委员会成员,并在MAPC领域内组织我们的外展活动。这份特别报告是这些外展活动的结果,因为在该地区,气候变化对海洋环境的影响是主要关注的。我们承认并感谢绿丝带委员会的约翰·克利夫兰(John Cleveland)和艾米·朗斯沃斯(Amy Longsworth)在启动GBRAG时获得的指导和支持。我们非常感谢Barr基金会为GBRAG活动和报告提供资金。我们还要感谢波士顿UMASS城市港口研究所的金伯利星巴克(Kimberly Starbuck)的胜任和坚定的行政努力,后者组织并管理了GBRAG会议,通讯和GBRAG报告。Bhaskaran Subramanian和Mike R. Johnson。我们进一步感谢GBRAG指导委员会的成员在此过程中的时间和周到的反馈。我们也非常感谢DRS提供的该报告的详细审查和详细的反馈。最后,我们非常感谢考特尼·汉弗莱斯(Courtney Humphries)的高质量(和最后一刻)的最终校对以及DG Communications的David Gerratt的细致和耐心的指导,他们制作了这份文档,我们为此感到非常自豪。
我们通过增强世界的增强表示,开发了一个分层的LLM任务计划和重建框架,以有效地将抽象的人类统一到有形的自主水下汽车(AUV)控制中。我们还挑战了一个整体的重建器,以向所有计划者提供现实世界中的反馈,以进行健壮的AUV操作。尽管已经进行了大量研究来弥合LLMS和机器人任务之间的差距,但他们无法保证在广阔而未知的海洋环境中AUV应用的成功。为了应对海洋机器人技术中的特定挑战,我们设计了一个层次结构计划来制定可执行的运动计划,该计划通过将长途任务分解为子任务,从而实现了计划效率和解决方案质量。同时,Replanner获得实时数据流以解决计划执行过程中的环境不确定。实验验证了我们所提出的框架是否通过自然语言试验为长期持续任务提供了成功的AUV表现。项目Web-网站https://sites.google.com/view/oceanplan。
大量的漂浮塑料碎片在海面积聚,在那里它们经受了物理化学和生物风化的影响。Solar UV light plays a pivotal role in degrading the polymer structure, inducing leaching and dissolution of pho- todegradation daughter products.尚不清楚这种塑料衍生的有机物(PDOR)的进一步命运,尤其是其在海洋中的寿命及其对海洋微生物的影响。在这里,我们使用了来自13C标记的塑料(聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS)和聚乙二醇二苯二甲酸酯(PET))的PDOL,我们与海水从对比的海水中孵育,与海水相反:海洋环境:Wadden Sea,Northe Sea,Northe Sea和Open Atlantic Ocean。微生物介导的p矿化是通过将13C标签从PDON追踪到末端氧化产物CO2并溶解无机碳(DIC)来确定的。虽然在测试的塑料和位置降解动力学不同,但我们发现沿海和开阔的海洋中的pdom降解潜力很大,无论是在海面还是在深海中。但是,基于16S扩增子测序的微生物群落分析表明,PDOM可以实质上改变海洋微生物组,这可能会对其他微生物介导的过程产生后果。
该论文由罗德岛大学带给您。已被DigitalCommons@URI的授权管理员纳入Open Access Master的论文。有关更多信息,请联系DigitalCommons-group@uri.edu。要允许重复使用受版权的内容,请直接与作者联系。
M100 8步电池充电器和维护器配备了一系列配件,可与不同类型的电池一起使用。它的三种可选程序模式使其适合与14-225AH电池和AGM电池一起使用,并且可以自动检测您的电池是否接近其寿命。M100还具有重新装饰深度放电电池的重新束缚模式,甚至可以用作12V电源源,例如,如果您需要卸下电池而不会丢失设置。
摘要 微生物(包括潜在病原体)可在水环境中的塑料表面定殖。本研究调查了大肠杆菌(E. coli)作为水环境中粪便病原体的替代物对塑料颗粒的定殖情况。将来自污染海滩的塑料颗粒放置在添加了大肠杆菌的海水水族箱中。多种细菌(主要来自变形菌门)在 24 小时内迅速在颗粒上定殖,其中值得注意的是以塑料或碳氢化合物降解而闻名的菌种。在 26 天内,塑料表面形成了生物膜,细菌种群达到 6.8 10 5 个 16S rRNA 基因拷贝数 (gc) mm 2 。使用培养方法在颗粒中检测到大肠杆菌长达 7 天,无论来源或环境因素如何,其附着密度均有所不同。该研究强调塑料生物膜是大肠杆菌的储存器,有助于粪便细菌在水生系统中生存和持续存在。这些发现加深了我们对海洋环境中塑料污染相关风险的理解,深入了解了粪便指标的行为及其对水质评估的影响,同时提供了有关塑料相关微生物群落中潜在病原体传播的宝贵信息。