第 1 节讨论了与生物医学研究中常用的无脊椎动物模型的冷冻保存和其他长期保存方法相关的主题,包括果蝇、秀丽隐杆线虫和海胆。会议报告重点介绍了保存这些生物的现行方法和局限性,以及从保存其他无脊椎动物(如缓步动物、蚊子和黑水虻)中吸取的经验教训。会议讨论了干燥和休眠期作为保存方法的潜力。与会者讨论了该领域的差距和挑战,包括准确传播协议所需的培训活动;专门化与通用协议开发的好处;难以繁殖和冷冻保存的菌株和生物;以及与存储空间、样品管理和质量控制相关的问题。
棘皮动物是用于分析胚胎发育的重要实验模型,但是缺乏对基因扰动的空间和时间控制阻碍了使用这些动物的发展研究。eChinoderm研究界成功使用了 mossensens寡核苷酸(MOS)已有近二十年了,MOS仍然是这些生物体中急性基因敲低的最广泛使用的工具。 echi-noderm胚胎在外部发展并在光学上透明,使其非常适合许多基于轻的基于光的方法来分析和操纵开发。 使用斑马鱼胚胎进行的研究已经揭示了有条件基因敲低的光活化(笼)MOS的有效性。 在这里我们表明,使用核碱酶截留的单体合成的笼子MOS可提供对海胆胚胎中基因表达的光调节。 我们的工作提供了在此突出的模型系统中有条件基因沉默的第一种强大方法。mossensens寡核苷酸(MOS)已有近二十年了,MOS仍然是这些生物体中急性基因敲低的最广泛使用的工具。echi-noderm胚胎在外部发展并在光学上透明,使其非常适合许多基于轻的基于光的方法来分析和操纵开发。使用斑马鱼胚胎进行的研究已经揭示了有条件基因敲低的光活化(笼)MOS的有效性。在这里我们表明,使用核碱酶截留的单体合成的笼子MOS可提供对海胆胚胎中基因表达的光调节。我们的工作提供了在此突出的模型系统中有条件基因沉默的第一种强大方法。
CRA 2岩石龙虾人口现在被评估为高于最大可持续收益率,这意味着可能有机会增加对该渔业资源的利用。然而,其他因素也很重要,例如岩石龙虾作为海胆的捕食者的生态作用,尤其是在顽童贫瘠的情况下,局部耗竭的问题以及休闲和习惯性毛利人渔民进入岩石龙虾渔业的能力。FNZ当前考虑的因素包括(a)默认管理目标是否(即应增加留在海洋中的岩石龙虾的数量,(b)审查CRA 2的捕捞设置,以及(c)是否应将内部Hauraki Gulf封闭在商业和休闲岩龙虾钓鱼中,以帮助他们在新西兰最强烈使用的海上使用的是什么。
I.定义将“水产养殖”定义为水生动物或水生植物的耕种,目的是为人类生产食物,并指定该定义不包括国有或操作的孵化场活动。将“水产养殖设施”定义为从事陆地或天然或人造水体中指定的水产养殖活动的设施,目的是为人类生产食物,并指定该定义不包括国家拥有或操作的孵化场。将“水生动物”定义为某些鳍鱼,头足类,以及某些其他游戏鱼或食物鱼,由俄勒冈鱼类和野生动物委员会指定,并指定该定义不包括某些海胆,以及蛤,贻贝,贻贝,牡蛎和扇贝。通过使用生物技术对基因进行修饰,克隆或操纵产生的“基因工程”,包括基因编辑技术,并指定了该定义不包括选择性育种的定义。
底栖调查发现,该地区主要生物为多毛类等喜细沙生物,还有密集的海胆 Echinoidea/ Spatangoida 和 Gracilechinus acutus,海星 Asterias rubens 、 Hippasteria phrygiana 和 Astropecten irregularis 以及寄居蟹 Paguridae 。沉积物表面可见动物洞穴、管道和足迹,但这些都很小,而且没有观察到穴居巨型动物。观察到的固着动物包括海葵 Actiniaria 、普通海螺 Buccinum undatum 和草皮形成属,如水螅和苔藓虫。有证据表明,在 Mariner 油田附近有北极蛤(OSPAR 受威胁和/或数量下降的物种,以及苏格兰优先海洋特征 (PMF)),此外,还观察到一种海笔 Virgularia mirabilis 和动物洞穴。从调查样本来看,这种密度不足以构成 OSPAR 栖息地“海围栏和穴居巨型动物群落”,尽管它可能存在。调查结果表明存在 Funiculina quadrangularis,这可能
单细胞(受精卵)发育成由数百万个细胞组成的动物是生物学中最令人惊奇的现象之一。几千年来,它一直激励着科学家。本模块将考虑动物发育背后的细胞和分子事件,借鉴一系列脊椎动物和无脊椎动物模型生物(包括线虫、果蝇、海胆、斑马鱼、青蛙和小鸡)的例子。它旨在将学生对发育生物学的知识和理解提升到当前研究的水平。主题将包括轴形成、原肠胚形成、神经诱导、神经系统模式、神经嵴、基因调控网络、左右不对称、昼夜节律钟、眼睛发育、干细胞、小鼠胚胎的转基因、线虫和苍蝇早期发育的遗传研究。该模块(CELL0002)的 30 学分版本还将包括 5-6 个实验室实践(例如果蝇、非洲爪蟾、斑马鱼、小鸡、哺乳动物、秀丽隐杆线虫)。
摘要:棘皮动物(海星、海胆及其近亲)拥有一种独特的胶原组织,这种组织受运动神经系统支配,其机械特性(例如拉伸强度和弹性刚度)可在数秒内发生改变。对棘皮动物“可变胶原组织”(MCT)的深入研究始于50多年前,20多年前,MCT首次启发了仿生设计。MCT,尤其是海参真皮,如今已成为开发新型机械适应性材料和设备的主要灵感来源,广泛应用于生物医学、化学工程和机器人技术等多个领域。在这篇评论中,在对 MCT 的结构、生理和分子适应性以及其可变拉伸性能的机制的现有知识进行最新介绍之后,我们将重点关注 MCT 作为概念生成器,调查受 MCT 生物学启发的仿生系统,表明这些包括生物衍生的发展(相同功能,类似的操作原理)和技术衍生的发展(相同功能,不同的操作原理),并提出了进一步利用这种有前景的生物资源的策略。
3周实验室课程(2021年9月 + 2022年9月):遗传学:创建基因组文库和免疫功能屏幕;细胞生物学:爪蟾卵母细胞和永生细胞的培养,细胞同步,蛋白质印迹,免疫荧光;生物化学:在计算机克隆中,重组蛋白的纯化;发育生物学:秀丽隐杆线虫(父亲成分的命运),斑马鱼,异武(胚胎轴,体外胃肠道),鸡肉,果蝇(转基因胚胎分析),小鼠(胚胎培养,器官,器官,器官,器官文化,转基因胚胎)理论(20221年10月2022年):2022年1月2022年):发育和干细胞生物学;遗传学;分子生物学和生物化学;免疫学伊拉斯mus+计划交换:里斯本,葡萄牙(里斯本大学科学学院)30个ECTS(2022年1月至2022年1月):实习细胞周期监管实验室(Monica Bettencourt-Dias)(CF专业经验)早期发育,生长调节,模式,细胞机制在Roscoff开发transreg课程(2022年12月):使用海胆模型(微注射,配子收集,细胞周期抑制剂...)
DNA甲基化[5-甲基环胞嘧啶(5MC)]是脊椎动物胚胎创世纪所需的抑制性基因调节标记。基因组5MC通过DNA甲基转移酶的作用严格调节,DNA甲基转移酶沉积了5MC和十个时期的易位(TET)酶,该酶通过形成5-羟基甲基霉素(5HMC)而参与其主动去除。TET酶对于哺乳动物的胃胃和椎间发育增强剂的激活至关重要。但是,迄今为止,缺乏对5HMC功能,丰度和基因组分布的清晰图像。通过使用基础分辨率5MC和5HMC定量,在海胆和叶片胚胎发生过程中,我们阐明了非脊椎动物5HMC和TET酶的作用。我们发现,这些无脊椎动物氘代表使用TET酶来靶向与发育基因相关的调节区域的脱甲基化,并表明鉴定出5HMC调节的基因的补充是对脊椎动物的保守的。这项工作表明,从调节区域中删除5MC是氘代表胚胎发生的共同特征,暗示了对主要基因调节模块的意外深层保护。
几乎所有现存的动物谱系中的物种都能够再生身体部位。但是,尚不清楚控制再生的基因表达程序是否在进化上保守。脆性恒星是一类具有出色再生能力的棘皮动物类,但是有限的基因组资源阻碍了对该组再生遗传基础的研究。在这里,我们报告了脆性恒星Amphiura Filiformis的染色体规模的基因组组件。我们表明,脆性星基因组是到目前为止测序的棘皮动物中最重新排列的,其重新组织的HOX群集让人联想到海胆中观察到的重排。此外,我们在脆性恒星成人手臂再生过程中对基因表达进行了广泛的分析,并确定了控制伤口愈合,增殖和分化的基因表达的顺序波。我们与其他无脊椎动物和脊椎动物模型进行了比较转录组分析,以进行附加物再生,并发现了数百个具有保守表达动力学的基因,尤其是在再生的增殖阶段。我们的发现强调了棘皮动物检测脊椎动物和经典无脊椎动物再生模型系统之间的远程表达保护的关键重要性。