大规模使用电动汽车产生了大量丢弃的锂离子电池,其中包含许多可回收的有价值的金属以及有毒和有害物质。可生物降解和可回收的深层溶剂(DES)被认为是用于用户的绿色回收技术。在此,我们提出了一种微波增强的方法,以缩短尿素/乳酸中的浸出时间:氯化胆碱:乙二醇DES系统。在高电场下,尿素或乳酸在LiCoo 2表面上诱导的偶极矩增加了两个数量级。因此,在尿素/乳酸中,可以在4分钟和160 W中快速浸出90%以上的LI和CO:氯化胆碱:乙二醇DES System。同时,我们建立了两个模型来解释金属离子的浸出动力学和微观行为的浸出机制,并分别将其命名为dot-etching and toelay-peeling过程。通过进一步分析,我们发现点蚀刻可以归因于还原和协调的协同作用,这导致了浸出残基多孔的表面。层 - - 磨牙过程取决于中和,并且浸出残基在此过程中具有光滑的表面。这项工作突出了微波增强策略和DES表面化学对耗尽电极材料恢复的影响。
在浸出电路中处理饲料(上面的图1中称为黑质量),以促进钴,镍,锰铜和锂的提取。怀孕的浸出溶液(“ PLS”)与固体浸出残留物分开。PLS的进一步提取和纯化会导致钴和镍的回收,因为高纯度硫酸盐适合直接销售,直接回到LIB供应链中。锂作为硫酸盐的回收将使其转化为氢氧化锂或碳酸锂,并在电池中重复使用。锰和铜硫酸盐可向这些金属的现有炼油厂销售或直接使用工业。固体浸出残留物包含石墨阳极材料,该材料将被干燥和播放。最终产品或“尾巴”是一种液态硫酸铵溶液,可以将其浓缩并结晶出售到肥料市场中。
Aurubis开发的过程集中在锂优先的浸出上,从而将大多数锂作为硫酸盐溶液回收,可以纯化或转化为碳酸锂等中间体。随后,靶向镍和钴的浸出过程相对简单,随后清除杂质。从这种浸出溶液中,钴,锰和镍分离并作为可销售中间体回收。富含石墨的浸出残留物已用于浮选流量表开发,该浓缩物最近已经提出了锁定循环测试的碳等级> 92%的碳等级。
1。当今的引言在可用的采矿技术中占有越来越重要的位置(Acevedo,2002; Mutch等,2010; Seitkamal等,2020; Cheng等,2021)。涉及硫化物矿物质浸出的最重要的细菌是嗜酸性硫巴基利。氮,磷,硫和镁等元素对于A.F.的生长至关重要。(Seifelnassr和Abouzeid,2000年)。为了在液体培养基中培养氧化细菌,已经开发了许多培养基。是酸性矿山排水的最常用培养基和酸性生长细菌是9K培养基,由Silverman和Lundgren在1959年描述(Silverman and Lundgren,1959年)。在用于生物座位之前,应对酸性矿山排水获得的细菌进行几个隔离过程,以达到足够的纯度和种群。金属从金属硫化物中浸出的金属可以通过一些嗜酸铁和/或氧化细菌加速。这些细菌是从工业浸出操作或自然浸出和酸性矿山排水区中分离出来的。在一项研究中,三个嗜酸性,化学营养性,
摘要:NCA电池占市场份额的8%,文献缺乏回收研究和通往具有成本效益的回收过程的途径。目前的研究旨在开发NCA圆柱电池的湿法铝回收过程。细胞被排出,然后在浸出之前进行身体治疗。评估了三种不同的酸:H 2 SO 4,H 3 PO 4和柠檬酸。由于存在Al箔,因此不需要减少剂,从而降低了浸出成本。柠檬酸代表了一种更好的成本效益的选择,但固体 - 液体分离代表了该过程的缺点。H 2 SO 4 SO 4在90°C下浸出90分钟,固体 - 液体比为1/5和2.0 mol/l,而无需Cu浸出,Al通过沉淀分离,然后使用Cyanex 272进行溶剂提取,以进行CO分离。ni作为氢氧化物获得,LI结晶为硫酸盐。质量平衡表明,在湿法铝处理中,约有92%的LI,80%和85%的CO可以回收。纯度> 95%的产品可用于电池和不锈钢生产。该过程有可能具有低CO 2足迹,未来的研究将探索它。
摘要:与传统的锂离子电池(LIBS)相比,固态电池(SSB)是有望实现高能密度和安全性提高的下一代电池的有希望的。尽管市场潜力很大,但很少有研究调查了SSB回收过程,以恢复和重用循环经济的关键原始金属。对于传统的LIB,湿法铝回收已被证明能够生产高质量的产品,而浸出是第一个单元操作。因此,必须建立对固体电解质的浸出行为的基本理解,这是具有不同lixiviants的SSB的关键组成部分。这项工作研究了矿物质酸(H 2 SO 4和HCl),有机酸,有机酸(Formic,乙酸,乙酸,草酸和柠檬酸)和水中最有希望的Al和最有前途的al和TA取代的Li 7 Li 7 Li 7 Li 7 La 3 Zr 2 O 12(LLZO)固体电解质。使用实际的LLZO生产浪费在1 m酸中以1:20 s/L的比率在25℃下24小时进行。结果表明,诸如H 2 SO 4之类的强酸几乎完全溶解了LLZO。用草酸和水观察到鼓励选择性浸出特性。对LLZO浸出行为的这种基本知识将为未来的优化研究提供基础,以开发创新的水透明质量SSB回收过程。
摘要。土地管理实践可以减少农业土地利用和生产的环境影响,提高生产力,并将农田转变为碳水槽。在我们的研究中,我们评估了生物物理和生物缘化学影响以及覆盖作物实践对可持续土地使用的潜在贡献。我们应用了基于过程的全球动态植被模型LPJML(Lund – Potsdam – jena托管土地)v。5.0-Tillage-CC,并具有覆盖作物的临时代表,以模拟两次连续主要作物生长季节,以模拟两种时期的草地上的草地生长,以实现接近临时的环境和土地途径。我们量化了农业综合系统成分的模拟响应,以涵盖与全球农田相比的农作物种植,涵盖了50年。在用耕作的覆盖作物中,我们在整个模拟时期的第一个和最后几十年中分别获得了年度全球中位土壤碳固次率分别为0.52和0.48 t c h - 1年-1年。我们发现,耕作的中位数为39%和54%,耕作降低了农田土壤的年氮浸出率,但在2个分析的数十年中,以下主要农作物的产生率平均降低了1.6%和2%。发现米饭的生产率最大,玉米和小麦的生产率降低,而大豆产量显示出对覆盖作物实践的几乎同质上的积极反应,以取代裸露的土壤休耕期。通过耕作实践所获得的模拟覆盖作物的模拟结果表现出良好的模型版本能力再现观察到的效果重新 -
锂是锂离子电池中最有价值的元素之一,但由于其高反应性,溶解度和低丰度,它也是最低的回收金属之一。这项工作提出了改进的碳热还原,并结合了从Li(Ni X Mn Y CO 1-X-Y)o 2个阴极的锂回收的水浸出过程。基于碳热还原的热力学分析,阐明了不同温度下的还原产物。在锂浸出效率方面评估了各种因素,例如烘烤温度,液化比和浸出时间的影响。还原产品的特征是XRD,SEMED和SIMS。结果表明,CO和Ni被还原为金属,Mn保持为氧化物,而LI在低于800℃的温度下主要转化为Li 2 Co 3,当温度超过900°℃时,LI仍被转化为Li 2 Co 3。水浸出使用低液体固体比有效提取锂。这种改进的锂提取过程可以有效地恢复超过93%的锂为氢氧化锂或碳酸锂,其纯度大于99.5%。研究了铝和铜杂质对锂回收率的影响,发现铜对锂的回收率没有显着影响,但是铝的存在通过铝酸锂的产生来降低锂回收率。
PANI黄金项目:PANI是一种低风险,高利润的大规模开放坑项目,从堆浸出加工(类似于结核病金矿)和未来几年随后的碳含量(类似于TB Gold Mine)和碳含量(“ CIL”)。由于Pani的低风险,高利润的属性,Merdeka已经在现场完成了实质性的开发工作,并投资了超过1亿美元的资源钻井,采矿机队购买和现场基础设施开发。同时,Merdeka正在完成一项可行性研究以优化项目。7MTPA堆浸出项目的建设资本支出估计约2亿美元,预计到2025年底开始黄金生产。堆浸出项目具有开始生产黄金的所有材料许可证。最终产量计划每年超过450,000盎司的黄金,这使其成为印度尼西亚最大的,也是亚太地区最大的金矿之一。一旦最初的堆浸处理开始,PANI的未来项目扩展将是自筹资金。