摘要 提出了一种用于快速检测IGBT去饱和短路的自适应消隐时间(SABT)电路。在IGBT正常开通或发生负载故障(FUL)时,通过检测IGBT集电极-发射极电压V CE 的变化来实现消隐时间的确定;而当IGBT发生硬开关故障(HSF)时,通过检测栅极电压V GE 来确定消隐时间。利用UMC 0.6μm 700V工艺进行仿真表明,提出的SABT电路能够快速检测FUL和HSF。与传统消隐时间电路相比,SABT电路可以将FUL的故障检测时间从1.3μs缩短到35.5ns,而HSF条件下的故障检测时间从2.329μs缩短到294ns。 关键词:消隐时间,IGBT,去饱和短路保护 分类:功率器件与电路
[方法] 通过将I-PpoI STOP/+小鼠与Cre ERT2/+小鼠杂交产生ICE小鼠。这些老鼠被给予他莫昔芬。
化学和生物学的水污染物的复杂性需要有效且可行的治疗方法。在此,使用氮化碳催化剂的光催化臭氧处理有效地用于消除靶向化学污染物的混合物,以及在实际的次级含水量中的大肠杆菌细菌和人类多瘤病毒JC(JC病毒)。在使用尿素和三聚氰胺作为前体制备的催化剂中比较了去角质处理。物理治疗没有明显增强基于尿素的催化剂,而三聚氰胺基(36MCN)材料的结构的改善和MELEM异质结的形成增加了其催化特性。在两组污染物中,光催化的臭氧化系统都优于光解臭,尤其是在臭氧消耗方面。最好的催化剂36mcn,导致消除化学,细菌和病毒污染物所需的臭氧剂量下降57.5%,33.0%和29.0%。羟基自由基还显示为污染物消除的钥匙。臭氧的较高的自由基生产和分解是可能的迹象表明,石墨氮化碳光催化臭氧化的性能更好,这是有效的第三级废水替代方案。
量子密钥分发 (QKD) [1,2] 开创了两个远距离通信方 (通常称为 Alice 和 Bob) 在窃听者 (称为 Eve) 面前共享密钥的全新方式。自第一个 QKD 协议——BB84 协议 [1] 提出以来,QKD 已成为量子信息技术的关注焦点 [3,4]。QKD 的无条件安全性已通过不同方法得到证明 [5–7],该安全性由量子力学定律保证。在传统的 BB84 协议之后,各种类型的新型 QKD 协议相继被提出。其中,高维量子密钥分发 (HD-QKD) 因具有在单个光子上编码多个比特的出色能力以及对信道噪声的强容忍度而备受关注。在高维量子密钥分发系统中,信息被编码在量子态的高维自由度上,如时间能量纠缠[8–10]、时间箱编码[11,12]、路径[13,14]和轨道角动量[15–17]。HD-QKD协议的安全性证明也已建立[18–20]。随着高维量子态制备和测量技术的发展,近年来不同的HD-QKD方案取得了许多突破性的成果[21–23]。其中,基于时间箱的HD-QKD方案[11,23]实现了创纪录的密钥速率,并且可以抵御一般的相干攻击。不幸的是,现实的QKD系统中的实际设备往往存在缺陷,很少符合理论安全模型[24,25]。因此,QKD的理论和实践之间始终存在差距。在过去的几十年里,QKD系统的实用安全性得到了广泛的研究。窃听者可以窃取
913 LE的“ Kono Miss”是选择!有史以来最佳短暂神秘又名Renjo Mikihiko,Edogawa Ranpo,Takagi Akimitsu,Awasaka tsumao
局部维度为 d > 2 的量子位元可以具有独特的结构和用途,而量子位 (d = 2) 则不能。量子位元泡利算子为量子位元状态和算子的空间提供了非常有用的基础。我们用几种方法研究了任意 d(包括合数)的量子位元泡利群的结构。为了涵盖 d 的合数,我们使用交换环上的模,这推广了场上向量空间的概念。对于任何指定的交换关系集,我们构造一组满足这些关系的量子位元泡利群。我们还研究了互相不交换的泡利集和成对不交换的集的最大大小。最后,我们给出了寻找泡利子群近似最小生成集的方法,计算泡利子群的大小,并找到量子位元稳定器码逻辑算子基的方法。本研究中有用的工具是交换环上的线性代数的范式,包括 Smith 范式、交替 Smith 范式和矩阵的 Howell 范式。这项工作的可能应用包括量子稳定器代码、纠缠辅助代码、超费米子代码和费米子哈密顿量模拟的构建和分析。
开放存取 本文件根据 Creative Commons Attribution 4.0 International License 获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供 Creative Commons 许可证的链接,并指明是否进行了更改。在作者匿名的情况下,例如匿名同行评审员的报告,作者归属应为“匿名审稿人”,然后明确归属源作品。本文件中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0。
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
Dhanur P. Iyer,1,2,10 Heidar Heidari Heidari Khoei,3,10 Vera A. Vera A. Vera A. van der Weijden,1 Harunobu Kagawa,3 Saurabh J. Pradhan,3 Maria Novatchkova,Maria Novatchkova,4 Afshan McCarthy,4 Afshan McCarthy,5 Teresa,5 Teresa Rayon,6 Claire S.Simiss Simon,5 kay simon,5 kay wam wam nunke e e.菲尔·斯内尔(Phil Snell)8岁,8莱拉·克里斯蒂(8 Leila Christie),8 Edda G. Schulz,7 Kathy K. Niakan,5,9 Nicolas Rivron,3,11, *和Aydan Bulut-Karslio Glu 1,11,12, * 1 * 1 * 1干细胞群,基因组调节部,Max Plancky Instituter for Institute for Mereclen and Institute for Mereclan andicmelt of Merecral Genetics,149191919195,149191919191919195弗雷大学柏林生物化学,德国柏林14195年3月3日3月3日,奥地利科学院分子生物技术研究所(IMBA),维也纳生物中心(VBC),维也纳,1030 Vienna,奥地利,奥地利4个分子病理学研究所(IMP)实验室,弗朗西斯·克里克研究所(Francis Crick Institute),伦敦NW1 1AT,英国6表格遗传学和信号计划,Babraham Institute,Babraham Research Campus,Babraham Research Campus,Cambridge CB22,UK 7 Systems Epegenetics,Otto-Warburg-Laboratories,Max Planck-Lanck-Laboratories,Max Planck commular commular遗传学,14195 Bernany,Bernany,Burnany,Burnany,Burnany,Burn bernany,Burnany 8 CB23 2TN,UK 9 9剑桥大学,剑桥大学,剑桥CB2 3EG,英国剑桥大学生理学,发展与神经科学系滋养细胞研究中心,这些作者同样贡献了11个作者,这些作者同样贡献了12个潜在客户联系人 *通讯 *通信 *通讯:Nicolas.rivron@imba.oeaw.ac.ac.at(N.R.),aydan.karslioglu@molgen.mpg.de(A.B.-K.)
