碰撞结果由多种因素决定,例如表面形貌以及本体和地下材料的刚度。例如,最近的研究表明,软聚合物涂层可能提供一种新颖的技术解决方案,可以显著减少甚至消除飞溅。[11] 然而,迄今为止还无法以动态可调的方式改变此类涂层的机械性能。磁活性弹性体 (MAE),也称为磁流变弹性体,是一种物理性能可通过外部磁场控制的智能材料。[2,12–20] 它们是混合材料 [21],由软聚合物基质(有机成分)和嵌入的铁磁微米级颗粒(无机成分)组成。之前的大部分研究集中在 MAE 的本体特性上。就本体机械性能而言,MAE 在较高的磁场下会变得更硬。这意味着它们的弹性模量会随着磁场的增加而增加。 [22] 然而,最近人们意识到,MAE 的表面性质在磁场中也会发生显著改变。特别是,润湿性[23–27]、表面粗糙度[28–33]、粘合性[23,24,34]和摩擦现象[35–37]都被发现强烈依赖于磁场。众所周知,磁场会影响磁流体液滴在刚性非磁性基板上的撞击动力学[38–40],但非磁性液滴撞击磁性基板的情况似乎是迄今为止被忽视的研究方面。MAE 本体和表面性质发生变化的物理原因是磁化填料颗粒的重构,即由于它们之间的磁相互作用而改变它们的相互排列。只有在足够柔软的聚合物基质中,微观结构才会发生显著的重构。因此,获得适当的基质柔软度是 MAE 制造中的重要挑战之一。根据软 MAE 的大磁场诱导结构变化,可以假设 MAE 表面的液滴飞溅也会受到磁场的影响。本文旨在证明通过外部磁场调节 MAE 表面液滴飞溅行为的可行性。基于高速视频图像分析,我们表明通过改变磁通密度,可以在撞击方式之间切换
碰撞结果由多种因素决定,例如表面形貌以及本体和地下材料的刚度。例如,最近的研究表明,软聚合物涂层可能提供一种新颖的技术解决方案,可以显著减少甚至消除飞溅。[11] 然而,迄今为止还无法以动态可调的方式改变此类涂层的机械性能。磁活性弹性体 (MAE),也称为磁流变弹性体,是一种物理性能可通过外部磁场控制的智能材料。[2,12–20] 它们是混合材料 [21],由软聚合物基质(有机成分)和嵌入的铁磁微米级颗粒(无机成分)组成。之前的大部分研究集中在 MAE 的本体特性上。就本体机械性能而言,MAE 在较高的磁场下会变得更硬。这意味着它们的弹性模量会随着磁场的增加而增加。 [22] 然而,最近人们意识到,MAE 的表面性质在磁场中也会发生显著改变。特别是,润湿性[23–27]、表面粗糙度[28–33]、粘合性[23,24,34]和摩擦现象[35–37]都被发现强烈依赖于磁场。众所周知,磁场会影响磁流体液滴在刚性非磁性基板上的撞击动力学[38–40],但非磁性液滴撞击磁性基板的情况似乎是迄今为止被忽视的研究方面。MAE 本体和表面性质发生变化的物理原因是磁化填料颗粒的重构,即由于它们之间的磁相互作用而改变它们的相互排列。只有在足够柔软的聚合物基质中,微观结构才会发生显著的重构。因此,获得适当的基质柔软度是 MAE 制造中的重要挑战之一。根据软 MAE 的大磁场诱导结构变化,可以假设 MAE 表面的液滴飞溅也会受到磁场的影响。本文旨在证明通过外部磁场调节 MAE 表面液滴飞溅行为的可行性。基于高速视频图像分析,我们表明通过改变磁通密度,可以在撞击方式之间切换
开发具有大量集成功能的大规模电解式 - 电气(EWOD)平台需要大量电极。传统上通过针计算最小化策略和路线路线方案来解决这一挑战,但我们提出了心形电极,当液滴运动是单向运动时,允许使用更少的引脚。此电极几何形状可确保液滴与前电极的重叠相比,而不是后部电极,从而产生了净毛细管将液滴向前拉的净毛细管。底部直径在0.8到1倍的底部液滴可以在长距离内可靠地驱动电极宽度,仅使用两个交替应用的驱动信号。最大信号开关频率使液滴的可靠运动与施加电压的平方和间隙高度成正比,但与电极直径成反比。互连电路的每个段仅跨越两个电极长度,这简化了电路路由并避免了大规模电极阵列中可能的迹线重叠。通过最小化销钉数,这种不对称设计为多功能大规模的EWOD平台中的电极布置提供了有希望的策略。
我们结合使用高速视频成像和电测量来研究水滴落在预带电固体表面时撞击能量如何直接转换为电能。在各种撞击条件(初始高度、相对于电极的撞击位置)和电参数(表面电荷密度、外部电路电阻、流体电导率)下进行系统性实验,使我们能够定量描述电响应,而无需基于水滴-基底界面面积演变的任何拟合参数。我们推导出此类“纳米发电机”所收集能量的缩放定律,并发现通过匹配外部电能收集电路和流体动力学扩散过程的时间尺度,可以实现最佳效率。
摘要 CRISPR/Cas9 技术是设计基因驱动系统以控制和/或改变蚊媒种群的有力工具;然而,CRISPR/Cas9 介导的非同源末端连接突变可能对产生抗驱动的等位基因产生重要影响,从而对驱动效率产生重要影响。我们展示并比较了两种技术在疟疾媒介蚊子斯氏按蚊中的插入或缺失 (indel) 检测能力:扩增子分析插入缺失检测 (IDAA™) 和液滴数字™ PCR (ddPCR™)。这两种技术在含有不同比例和不同大小的插入缺失的蚊子样本中都显示出插入缺失频率的准确性和可重复性。此外,这些技术具有优势,使它们可能更适合在基因驱动蚊子的笼养试验和封闭式现场测试中进行高通量非同源末端连接分析。
实验测量曲面上的表观接触角通常需要专用仪器,这种仪器价格昂贵且不易普及。为了应对这一挑战,我们提出了一个简单的润湿模型,从理论上预测液滴在凸面和凹面球面上的表观接触角,这需要知道液滴的体积、表面曲率和固有接触角。利用该理论模型,我们研究了曲面半径和疏水性对润湿行为的影响。对于凹面,其上的液滴可能呈现凸面或凹面形态,具体取决于详细参数。本研究确定了液滴从凸面变为凹面的临界体积。利用该模型,还研究了具有微结构的曲面上的接触角。该模型可能有助于理解自然润湿现象和更好地设计相关结构。2015 Elsevier BV 保留所有权利。
摘要 纳米压印光刻(NIL)是一种能够实现低成本、高通量纳米加工的新兴技术。近年来,NIL 的主要发展方向是高通量和大面积图案化。紫外固化型 NIL(UV NIL)可以在室温和低压下进行。UV NIL 的一大优势是它不需要真空,大大简化了工具构造,从而无需真空操作的高精度工作台和大型真空室。然而,非真空环境下的一个关键问题是气泡的形成问题,即气泡能否从光刻胶中完全去除。本文对非真空环境下 UV NIL 中采用液滴涂抹法形成气泡的情况进行了实验研究,研究了液滴体积和涂抹点数量对气泡形成的影响。