单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
本文介绍了一种使用心电图 (ECG) 早期检测心脏异常的新型定制混合方法。ECG 是一种生物电信号,有助于监测心脏的电活动。它可以提供有关心脏正常和异常生理的健康信息。早期诊断心脏异常对于心脏病患者避免中风或心脏猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键心跳。首先,改进的 Pan-Tompkins 算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络 (CNN) 在标准和实时长期 ECG 数据库上进行实验。这项工作成功地对几种心跳异常进行了分类,例如室上性异位搏动 (SVE)、心室搏动 (VE)、心室内传导障碍搏动 (IVCD) 和正常搏动 (N)。所获得的分类结果显示,使用 MIT-BIH 数据库的分类准确率达到 99.28%,F 1 分数为 99.24%,而使用实时获取的数据库的分类准确率下降为 99.12%。
众所周知,大脑中的可塑性电路通过突触整合和突触强度局部调节机制受到突触权重分布的影响。然而,迄今为止设计的大多数人工神经网络训练算法都忽略了刺激依赖性可塑性与局部学习信号之间的复杂相互作用。在这里,我们提出了一种新型的生物启发式人工神经网络和脉冲神经网络优化器,它结合了皮质树突中观察到的突触可塑性的关键原理:GRAPES(调整误差信号传播的组责任)。GRAPES 在网络的每个节点上实施依赖于权重分布的误差信号调制。我们表明,这种生物启发式机制可以显著提高具有前馈、卷积和循环架构的人工神经网络和脉冲神经网络的性能,它可以减轻灾难性遗忘,并且最适合专用硬件实现。总的来说,我们的工作表明,将神经生理学见解与机器智能相结合是提高神经网络性能的关键。
在日常环境中使用物联网(IoT)传感器和设备的压倒性用途(房屋,医院,酒店,制造地板,仓库,零售店,机场,智能城市等。),如今,实时感知和驱动的长期目标是看到一个宏伟的现实。环境和自适应通信技术可以实现特定特定和不可知论的物联网产品,解决方案和服务的快速增长领域。可以建立并交付给相关人员和系统的跨业务垂直行业的各种情境知识服务和应用程序。多方面的物联网传感器嵌入到各种物理系统中,例如机器人,无人机,飞行引擎,防御设备,医疗器械,电器,厨房用具,消费电子,消费电子,货车,制造机械等。进行此填充是为了不断地监视和测量物理系统的各种参数(日志,结构,操作,健康状况,绩效,安全性等)。IoT设备和传感器部署在工作,散步,购物,社交和放松的地方是连接和数字化的实体。目标是使这些设备和传感器能够在其操作,输出和产品方面具有智能。这些要素在我们的个人,社会和专业环境中大量部署在他们的决策,交易和行为中必须具有认知和认知。数字化的实体有权收集在其环境中生成的多结构数据,清洁和关键,以实时发射可行的见解。普通的工件和文章与技术驱动的实时数据捕获,存储,处理和发音的力量进行了数字化,连接和智能。数字化和数字化技术和工具在将原始数据转换为信息和知识方面派上用场。人工智能(AI)是最有效,最深刻和相关的技术范式,可以简化,简化和加快将批处理和流数据分流为有用知识的过程。边缘AI的开创性概念(替代边缘智能,设备数据处理等)是两种强大技术的融合:边缘计算和人工智能。
机器学习 (ML) 算法已应用于医学成像,其在医学领域的使用日益增多。尤其是深度学习 (DL),已证明在图像评估和处理方面更为有效。深度学习算法可能有助于并简化其在泌尿科成像中的使用。本文介绍了如何创建用于泌尿科图像分析的卷积神经网络 (CNN) 算法。深度学习是 ML 的一个分支,包括多层神经网络。卷积神经网络已广泛应用于图像分类和数据处理。1 它首先由 Krizhevsky 等人应用于图像分类。2 他们在 2012 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中凭借名为 AlexNet 的深度 CNN 赢得了比赛,该比赛由 120 万张日常彩色图像组成。3 在另一个 CNN 模型中,Lakhani 等人 4 证明他们
多个方面正在加速取得重大突破 在我们的 2021 年报告中,我们强调了欧洲深度科技的巨大潜力。事实上,欧洲深度科技度过了最好的一年,获得了超过 220 亿美元的融资,并以 10 亿美元的价格退出。从那时起,我们还看到量子计算(第一个 100+ 量子比特处理器和硅基设备中近乎无误差的量子计算得到验证)、核聚变(产生的能量几乎是记录的三倍)、空间技术(Starlink 为乌克兰提供互联网覆盖、詹姆斯韦伯太空望远镜、新的登月任务)、生成性人工智能(Dall-E 转向商业用途、稳定扩散文本到图像生成性人工智能发布、ChatGPT 在 5 天内覆盖 100 万用户)等关键领域取得了巨大突破等等。
创伤性脑损伤(TBI)是指由外力造成的脑损伤,典型的影响很大,通常是由于汽车事故,跌倒或运动损伤等事件造成的。在2019年全球记录了超过2700万例新的TBI病例,这种类型的伤害很常见,可能会威胁生命[1]。尽管在影响时发生了主要伤害,但TBI患者面临着次要损伤的巨大风险,在初次创伤后的几个小时甚至几天内,这种损伤可能会逐渐发展[2]。这些次要侮辱与颅内压增加(ICP)有关,这是颅库内压力的危险增加。当ICP增加时,可以限制脑血流。这种限制可能导致脑缺血,其中大脑被剥夺了氧气,这是ICP升高的主要伤害作用。紧急医疗干预需要管理和减少ICP,因为ICP的未经治疗的海拔高程会导致永久性神经系统损害,昏迷甚至死亡。预防和管理次要损伤对于对TBI患者的治疗至关重要,并且通常涉及对ICP的持续监测,稳定患者的状况以及采用干预措施,例如药物,手术减压或脑脊髓液流体,以最大程度地损害进一步的损害。迅速治疗升高的ICP可以显着提高预后,并降低长期残疾的可能性[3,4]。
深度学习是一种自动学习方法,它基于大量示例的学习模式。 div>是一种复杂问题的特别有趣的方法,为之,数据(经验)广泛可用,但是制定分析解决方案是不可行的。 div>在本课程中,我们将探讨深度智能和计算机视觉的基本概念。 div>我们将通过理论会议和实践示例来展示如何根据任务(对象检测,实例分割,对象之间的关系预测)和数据模式(图像,视频,3D)创建和训练深层智力模型。 div>该课程将以一些高级问题的介绍以及有关最近趋势的讨论进行介绍。 div>
