• 主席 – 金钟京 (汉阳大学) • 秘书 – 申昌浩 (汉阳大学 iTRS) • 金灿炯 (汉阳大学) • 金圭渊 (韩国原子能研究院) • 李熙硕 (浦项加速器实验室/浦项科技大学) • 杨华婷 (中国辐射防护学会) • 刘森林 (中国原子能科学研究院) • 刘立业 (中国辐射防护研究所) • 刘群 (中国辐射防护研究所) • 邱瑞 (清华大学) • 中村隆 (东北大学) • 马场守 (东北大学) • 石桥健二 (九州大学) • 服部隆敏 (电力工业中央研究院) • 井口哲男 (名古屋大学) • 山泽宏美 (名古屋大学) • 博之高桥(东京大学)
1. 复旦大学,上海 2. 哈尔滨工程大学 3. 哈尔滨工业大学 4. 河海大学 5. 香港理工大学,香港 6. 山地灾害与环境研究所 7. 南京大学,南京 8. 西北大学 9. 北京大学,北京 10. 上海交通大学,上海 11. 上海对外经济贸易大学 12. 上海大学,上海 13. 西亚斯学院 14. 中南民族大学 15. 清华大学,北京 16. 中国科学技术大学,合肥 17. 武汉大学 18. 西安交通大学 19. 西安建筑科技大学 20. 西安电子科技大学 21. 云南大学 22. 浙江大学,杭州 23. 华中农业大学 24. 四川大学 25. 中南民族大学 26. 西南石油大学 27.河南师范大学 28. 广西大学 29. 西北农林科技大学 (NWAFU) 巴基斯坦大学
北京科技大学的起源可追溯到1895年北洋西学馆创建的中国近代史上第一个矿冶学科。1952年,学校由清华大学、天津大学等6所著名高校的院系合并组建,现已发展成为工学、理学、管理学、文科、经济学、法学等学科协调发展的教育部直属重点大学。北京科技大学是全国首批正式设立研究生院的高等学校之一。1997年5月,北京科技大学进入国家“211工程”建设,2006年,北京科技大学入选“国家先进学科创新平台”,2014年,由北京科技大学牵头建设的“钢铁技术协同创新中心”成功入选国家“2011计划”。 2017年,学校入选“双一流”建设高校,2018年,国防科工局、教育部联合对接指导学校建设。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
a 北德克萨斯大学电气工程系,德克萨斯州登顿 76203,美国 b 瑞典皇家理工学院电气工程与计算机科学学院决策与控制系统分部,斯德哥尔摩 100 44,瑞典 c 浙江大学控制科学与工程学院,杭州 310027,中国 d 华中科技大学人工智能与自动化学院和数字制造装备与技术国家重点实验室,武汉 430074,中国 e 太平洋西北国家实验室,华盛顿州里奇兰 99352,美国 f 清华大学精密仪器系和精密测试技术与仪器国家重点实验室,北京 100 084,中国 g 中国科学院系统科学研究所系统与控制重点实验室,北京 100190,中国 h 橡树岭国家实验室,田纳西州橡树岭 37932,美国 i 弗吉尼亚大学 Charles L. Brown 电气与计算机工程系,美国弗吉尼亚州夏洛茨维尔 22904
Fan-Tien CHENG(主席),国家。成功大学 Nak Young CHONG,日本先进研究所。科学。技术。Mariagrazia DOTOLI,巴里理工大学 Martin FABIAN,查尔姆斯理工大学。Maria Pia FANTI,巴里理工大学 Cesare FANTUZZI,大学。摩德纳和雷焦艾米利亚 Ken GOLDBERG,加州大学伯克利分校 Xiaohong GUAN,西安交通大学 George Q. HUANG,香港大学 Qing-Shan JIA,清华大学 Bengt LENNARTSSON,查尔姆斯理工大学李景山,威斯康星大学麦迪逊分校 Peter B. LUH,康涅狄格大学 Dan O. POPA,路易斯维尔大学 Spyros REVELIOTIS,佐治亚理工学院 Kazuhiro SAITOU,密歇根大学 Weiming SHEN,西部大学 石乐源,威斯康星大学麦迪逊分校 孙宇,多伦多大学 Birgit VOGEL-HEUSER,慕尼黑工业大学 Michael WANG,香港理工大学& Tech.周孟初,新泽西理工学院Tech.
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学交叉信息研究院量子信息中心,北京 100084 3 阿里巴巴-浙江大学前沿技术联合研究院,杭州 310027 4 浙江大学杭州全球科技创新中心,杭州 311215 5 马里兰大学和 NIST 联合量子研究所及量子信息与计算机科学联合中心,美国马里兰州学院公园市 6 爱荷华州立大学物理与天文系,美国爱荷华州艾姆斯 50011 7 艾姆斯实验室,美国爱荷华州艾姆斯 50011 8 QuEra Computing Inc.,美国马萨诸塞州波士顿 02135 9 科罗拉多矿业学院物理系,美国科罗拉多州戈尔登 80401 10 美国国家标准与技术研究所,科罗拉多州博尔德 80305 11 上海启智研究所,中国上海市徐汇区云锦路 701 号人工智能大厦 41 层 200232
1 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029;wangguilei@ime.ac.cn(GW);sujiale@ime.ac.cn(JS);miaoyuanhao@ime.ac.cn(YM);lijunjie@ime.ac.cn(JL);renyuhui@ime.ac.cn(YR);lijunfeng@ime.ac.cn(JL) 2 中国科学院大学集成电路学院,北京 100049 3 北京超弦存储技术研究院,北京 100176 4 清华大学集成电路学院,北京 100086;jun-xu@tsinghua.edu.cn 5 广东大湾区集成电路与系统研究院光电混合集成电路研发中心,广州 510535; linhongxiao@ime.ac.cn (HL); liben@ime.ac.cn (BL) 6 中国科学院微电子研究所高频高压器件与集成研究发展中心,北京 100029,中国;xunmeng@ime.ac.cn 7 北方华创科技集团股份有限公司,北京 100176,中国;gushihai@naura.com 8 北京航空航天大学综合科学与工程学院费尔特北京研究所,北京 100191,中国;kaihua.cao@buaa.edu.cn 9 中瑞典大学电子设计系,Holmgatan 10, 85170 Sundsvall,瑞典* 通讯地址:kongzhenzhen@ime.ac.cn (ZK); liangrr@mail.tsinghua.edu.cn (RL); rad@ime.ac.cn (HHR);电话:+86-010-82995897(中控)
∗ 我们感谢 Ran Abramitzky、Michela Giorcelli、Claudia Goldin、Walker Hanlon、Larry Katz 和 Nathan Nunn 的见解;感谢斯坦福经济史研讨会、哥伦比亚大学 NT Wang 讲座、西北大学经济史午餐会、清华大学应用研讨会的参与者提出的许多有用评论;以及耶鲁经济增长中心 2022 年“帝国、移民和发展”会议、NBER 暑期学院 DAE(2023 年)和经济增长(2022 年)研讨会、2024 年 ASSA 年会和 IOG 2024 年春季会议的讨论者和参与者提出的有益建议。我们感谢 Angelo Azzolini、Vasu Chaudhary、Marta Leva、Emanuele Licari、Ludovica Mosillo 和 Nicole Saito 提供的出色研究协助。所有错误均由我们自己承担。† 研究改善人民生活 (RIPL)。‡ 布朗大学。 carlo medici@brown.edu。§ 西北大学、复旦大学 FISF、NBER、CEPR 和 BREAD。nancy.qian@kellogg.northwestern.edu。¶ 哈佛商学院、NBER、CEPR、CReAM 和 IZA。mtabellini@hbs.edu。
摘要 . 印度尼西亚实验动力反应堆 (RDE) 的基本设计参考了中国清华大学自 1995 年以来开发并于 2000 年 12 月首次通过评审的高温气冷反应堆测试模块 (HTR-10)。目前,核电站 (NPP) 行业控制系统市场使用微控制器和可编程逻辑控制器 (PLC)。然而,由于基于计算机的技术容易受到网络攻击、软件共因故障 (CCF) 和系统复杂性的影响,因此,RDE 设计的开发应根据最新技术考虑,并符合在维护核电站安全方面发挥重要作用的仪表和控制 (I&C) 系统的发展。本研究涉及基于 PLC 系统的 I&C 逆向工程程序,以从先前的设计中获得设计规范,从而通过使用现场可编程门阵列 (FPGA) 作为替代平台来考虑系统硬件,从而提高其可靠性。在开发逆向工程之前,应该分析为什么 FPGA 成为替代 PLC 系统的替代系统。逆向工程过程将涵盖基于模型的系统工程 (MBSE),这是一种正式的建模应用程序,用于支持系统需求、设计、分析、验证和确认 (V&V) 活动。该过程从概念设计、需求分析开始,持续