摘要 目的 当快速眼动(REM)睡眠期间出现元认知时,人们会经历清醒梦(LD)。对这种现象的研究面临着不同的障碍。例如,其标准验证协议至少需要三种类型的传感器。我们假设,作为清醒的标志,预先商定的额肌运动(PAFM)可以在 REM 睡眠期间的脑电图(EEG)上看到。在这种情况下,只需要一个 EEG 传感器即可验证 LD。方法在实验室观察下,指示五名志愿者诱导 LD,在此期间他们需要使用标准验证协议和预先商定的眼球运动(PAEM),然后立即抬起眉毛三次作为 PAFM。结果所有参与者都能够使用一种或两种方法从总共八个 LD 发送信号。预先商定的额肌运动和 PAEM 在大多数 EEG 上同样独特,但 PAFM 质量在很大程度上取决于方法的准确性。预先约定的额肌运动表现出两种类型的脑电图模式,当 LD 不稳定时会导致立即觉醒。讨论虽然结果表明 PAFM 可用于验证 LD,但这种方法不如 PAEM 一致且明显。此外,在使用 PAFM 之前需要准确的指导。当无法进行多导睡眠图时,可以应用 PAFM,因为它只需要一个脑电图传感器即可同时检测 REM 睡眠和意识。
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
尚未确定用于监测术中语言症状的语言任务。这项研究旨在检查在清醒颅骨术期间对语言功能的定量评估是否可以预测患者的早期术后语言功能。包括语言为主导半球的三十七名患有脑肿瘤的患者。他们在术前和肿瘤切除术结束时进行了视觉和听觉命名,以进行内部评估。使用西方失语症电池,术前,术后(1周内)和术后晚期(1个月后)对其整体语言功能进行了评估。视觉和听觉命名评分的术前和术中变化与术前和术后早期评估之间的大多数西方失语症电池评分的变化显着相关,这对于听觉命名更为显着。多个线性回归分析表明,听觉命名评分的变化预测了西方失语症电池失语症的早期术后变化的术前变化。接收器的操作特征分析表明,在术后早期早期预测失语症的发展或加剧方面,听觉的曲线或判别能力的面积较高。考虑到针对低级和高级神经胶质瘤的分析,攻击性命名(攻击范围更广泛的语言功能)可能比视觉命名更具信息性,因为在术后早期的失败患者中,在清醒颅骨术中的语言命名评估是对高级囊肿的早期发育。
Age 1.005 0.944 1.071 0.871 Women Asleep 62.42 1.16 Awake 64.80 1.69 Men Asleep 62.04 1.37 Awake 61.00 3.78 Disease duration 1.073 0.933 1.234 0.321 Women Asleep 9.32 3.07 Awake 10.06 2.61 Men Asleep 9.21 3.48 Awake 9.71 4.15 UPDRS I 0.943 0.929 1.072 0.369 Women Asleep 12.26 5.31 Awake 11.20 2.39 Men Asleep 10.38 4.32 Awake 9.20 5.32 UPDRS II 0.976 0.829 1.072 0.592 Women Asleep 15.39 6.41 Awake 17.20 4.15 Men Asleep 16.25 8.37 Awake 14.40 6.08 UPDRS III OFF 0.990 0.938 1.045 0.725 Women Asleep 49.53 12.56 Awake 50.40 11.44 Men Asleep 51.79 13.19 Awake 49.60 13.48 UPDRS III ON 0.968 0.903 1.038 0.361 Women Asleep 19.79 8.49 Awake 20.40 12.10 Men Asleep 20.94 10.75 Awake 19.24 9.98 UPDRS IV 0.861 0.737 1.005 0.058 Women Asleep 11.37 3.12 Awake 11.00 1.41 Men Asleep 10.26 3.62 Awake 9.40 3.74 PDQ-39 0.610 1.006 0.984 1.028 Women Asleep 57.18 16.64 Awake 62.80 20.39 Men Asleep 44.64 20.82 Awake 45.88 19.19 PAS Total 0.973 0.887 1.069 0.570 Women Asleep 13.95 6.17 Awake 16.00 7.18 Men Asleep 10.45 5.76 Awake 9.52 7.04 BDI 1.011 0.911 1.120 0.845 Women Asleep 11.47 5.73 Awake 13.20 3.42 Men Asleep 11.17 6.69 AWAKE 10.39 5.20 MOCA 1.079 0.925 1.258 0.334女性入睡25.89 3.11醒25.60 2.88
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2022 年 5 月 4 日发布。;https://doi.org/10.1101/2022.03.30.486457 doi:bioRxiv preprint
摘要 人们普遍认为,脑脊液 (CSF) 运动是由脑内血管壁运动 (即血流动力学振荡) 促进的。最近,通过功能磁共振成像 (fMRI) 发现了非快速眼动 (NREM) 睡眠期间低频血流动力学振荡和 CSF 运动的连贯模式。这一发现提出了其他基本问题:1)从 fMRI 信号解释血流动力学振荡和 CSF 运动之间的耦合;2)清醒状态下是否存在耦合;3)CSF 运动的方向。在这项静息态 fMRI 研究中,我们提出了一个力学模型,通过 fMRI 的视角来解释血流动力学和 CSF 运动之间的耦合。计算了 CSF 运动和整体血流动力学之间的时间延迟。观察到的血流动力学和 CSF 运动之间的延迟与模型预测的延迟相符。此外,通过对大脑和颈部进行单独的 fMRI 扫描,我们证实了第四脑室的低频 CSF 运动是双向的。我们的研究结果还表明,即使个体处于清醒状态,脑脊液运动也主要受到低频范围内脑血容量变化的促进。
1个徘徊的思想,昏昏欲睡的大脑:觉醒时有2个关注和当地睡眠。3 4 5 Thomas Andrillon 1 *,Angus Burns 1,Teigane Mackay 1,Jennifer Windt 2&Naotsugu 6 Tsuchiya 1,3,4 7 8 9 9隶属关系:10 1.特纳大脑与心理健康研究所心理科学学院,莫纳什11大学,墨尔本3168,澳大利亚维多利亚州。12 2。哲学系,莫尔本大学,墨尔本3168,澳大利亚维多利亚州。13 3。信息和神经网络中心(Cinet),美国国家信息研究所和14个通信技术(NICT),苏亚,大阪565-0871,日本15 4。高级电信研究计算神经科学实验室,2-2-2 16 Hikaridai,Seika-Cho,Soraku-Gun,Kyoto 619-0288,日本。17 18 19 20 *通讯作者:托马斯·安德里隆(Thomas Andrillon)。21邮政地址:莫纳什生物医学成像,布莱克本路770号,克莱顿3168,澳大利亚维多利亚22号。23电子邮件:thomas.andrillon@monash.edu 24 orcid:https://orcid.org/000000-0003-2794-8494 25 26 26 27 27数据和代码可用性:28原始数据:28原始数据: https://osf.io/ey3ca/?view_only = 680C39E7065649C3B783A4EFEC0A1A94 29用于分析的代码:https:///github.com/andrillon/wanderim 31
人们对人类在自主运动控制过程中脊髓的电生理活动知之甚少。我们提出了一种新方法,使用植入的硬膜外电极记录自然运动(包括地面行走)期间人类脊髓的电生理活动。作为对接受脊髓刺激评估的慢性疼痛患者的测试试验的一部分,从植入的硬膜外电极记录脊髓电图 (SEG)。将硬膜外导线的外化端连接到外部放大器以捕获 SEG。使用无线传感器收集上肢和下肢的肌电图和加速度数据,并将其同步到 SEG 数据。指示患者进行各种手臂和腿部运动,同时收集 SEG 和运动学数据。这项研究证明了对执行运动任务的人类受试者进行硬膜外脊髓记录的安全性和可行性。
目的:由于实际、方法和分析方面的考虑,婴儿期功能性磁共振成像 (fMRI) 面临挑战。本研究旨在实施一种与硬件相关的方法来提高清醒婴儿 fMRI 的受试者依从性。为此,我们设计、构建并评估了一个自适应的 32 通道阵列线圈。方法:为了能够使用紧密贴合的头部阵列线圈对 1-18 个月大的婴儿进行成像,开发了一种可调节头部线圈概念。线圈设置方便半坐式扫描姿势,以提高婴儿的整体扫描依从性。耳罩隔间直接集成在线圈外壳中,以便在使用声音保护时不会失去线圈在婴儿头部的紧密贴合。使用基准级指标、信噪比 (SNR) 性能和加速成像能力,根据模型数据对构建的阵列线圈进行评估,以用于平面和同步多层 (SMS) 重建方法。此外,还获取了初步的 fMRI 数据以评估体内线圈的性能。结果:与市售的 32 通道头部线圈相比,模型数据显示 SNR 平均增加了 2.7 倍。在婴儿头部模型的中心和外围区域,测得的 SNR 增益分别为 1.25 倍和 3 倍。婴儿线圈还显示出对欠采样 k 空间重建方法和 SMS 技术的良好编码能力。