对于高温(从 600 °C 到 962 °C),铂电阻温度计和热电偶比较的校准不确定度受到标准温度计的不稳定性和可重复性以及标准温度计温度不均匀性的限制。配有比较块的烤箱的工作体积。为了改善这些不确定性,我们研究了同时连接多个热管、使用不同传热流体并由同一压力调节系统控制的可能性。该实验装置被称为“温度放大器”,由两根充满钠和水的热管组成。本文对这项工作进行了盘点,该工作产生了一个可操作的工具,并介绍了相关的校准不确定性。
β-磷酸三卡氏菌(β-TCP)主要是因为其出色的生物降解性。然而,单相β-TCP具有受控性能的合成而不影响陶瓷的生物相容性是一个挑战。这项研究的目的是合成可生物塑料和破骨的β-TCP作为骨替代物质,并评估陶瓷的机械性能。在这项工作中,采用了两步热处理过程。最初,将材料在700 O C下进行热处理,随后在1000、1100和1200 OC的不同温度下烧结。显示β-TCP相的稳定性在1200 O C烧结时与某种形成α-TCP相时烧结时的稳定性。发现相纯β-TCP样品的直径拉伸强度约为4.06 MPa,并且在存在α-TCP相的存在下被发现下降。生物细胞研究表明,β-TCP样品作为细胞附着,增殖,分化和矿化的底物非常出色,因此表现出极好的生物相容性。这项研究表明,β-TCP用作骨骼替代物质的潜力很大。
1 3.0 V 至 3.6 V 和 4.5 V 至 5.5 V 电源范围的精度规格指定为 3- Σ 性能。 2 建议不要在高于 125°C 的温度下操作器件,且操作时间不得超过器件使用寿命的 5% (5,000 小时)。超过此限值的任何暴露都会影响器件的可靠性。 3 常模电流与 T L 期间的电流有关。TMP05/TMP06 在 T H 期间不转换,因此静态电流与 T H 期间的电流有关。 4 由设计和特性保证,未经生产测试。 5 建议限制从 TMP05 输出拉出的电流,因为任何流过芯片的过大电流都会导致自热。因此,可能会出现错误的温度读数。 6 测试负载电路为 100 pF 至 GND。 7 测试负载电路为 100 pF 至 GND,10 kΩ 至 5.5 V。
摘要。本研究介绍了温度传感器标签的设计和验证,该标签可通过使用 NFC 协议的手机或 HF RFID 阅读器进行查询。它将轻松确保冷链故障和产品完整性。所提出的记录传感器可以放置在包装盒上以测量产品的温度。这允许观察和存储其变化,以保证产品质量并遵守运输过程中的适用规定。由于具有 NFC 的手机,与市场上现有的标签相反,这些记录数据可以轻松获得。标签的设计归结为组件的选择和天线的尺寸。然后使用 C 语言开发了一个用于数据记录和处理的程序。事实上,为了获得位置、速度和成本的三倍增益;对记录的值进行了优化。整体标签尺寸为 5.1x4x1.6 mm 3 ,其操作已通过在真实场景中执行来验证:对袋子内的水瓶进行至少 50 分钟的温度监测。将介绍和讨论此测试的结果。
[5] R. Schmidt 和 U. Scheuermann,“使用芯片作为温度传感器 - 陡峭横向温度梯度对 Vce(T) 测量的影响”,2009 年第 13 届欧洲电力电子及应用会议,巴塞罗那,2009 年,第 1-9 页。
抽象的仪器电池电池(即包含传感器的那些)和智能电池(具有集成控制和通信电路)对于开发下一代电池技术(例如钠离子电池(SIB))至关重要。参数的映射和监视,例如温度梯度的量化,有助于改善单元格设计并优化管理系统。必须保护集成的传感器免受严酷的电解环境。最先进的涂料包括使用Parylene聚合物(我们的参考案例)。我们将三种新型涂料(基于丙烯酸,聚氨酯和环氧树脂)应用于安装在柔性印刷电路板(PCB)上的热敏电阻阵列。我们系统地分析了涂料:(i)电解质小瓶中的PCB浸没(8周); (ii)分析插入硬币细胞的样品; (iii)分析1AH小袋SIBS的传感器和细胞性能数据。基于钠的液体电解质,由溶解在碳酸乙烯酸乙酯和碳酸二乙二烯的混合物中的1 m溶液(NAPF 6)的比例为3:7(v/v%)的混合物组成。我们的新型实验表明,基于环氧的涂层传感器提供了可靠的温度测量。与戊烯传感器相比,观察到的出色性能(据报道,一个样品的错误结果,在电解质中浸入5 d以下)。核磁共振(NMR)光谱在大多数测试的涂层的情况下显示,在暴露于PCBS涂抹的不同涂层期间发生了其他物种。基于环氧的涂层表现出对电解环境的韧性,并且对细胞性能的影响最小(与未修饰的引用相比,在2%的硬币细胞中,容量降解在2%以内,小袋细胞的3.4%以内)。这项工作中详细介绍的独特方法允许传感器涂层在现实且可重复的细胞环境中进行试验。这项研究首次证明了这种基于环氧树脂的涂层使可扩展,负担得起和弹性的传感器能够集成到下一代智能SIBS上。
展示了基于 SiC 原子级自旋中心能级交叉弛豫的全光学测温技术。该技术利用了三重基态 S=1 中心零场分裂的巨大热位移,光致发光无法检测到(所谓的“暗”中心)耦合到相邻的自旋 3/2 中心,这些中心可以进行光学极化和读出(“亮”中心),并且不需要射频场。EPR 用于识别缺陷。交叉弛豫线的宽度几乎比全光学测温中使用的激发态能级反交叉线的宽度小一个数量级,并且由于由激发态的寿命决定,因此无法显着减小。由于温度偏移和信号强度与激发态能级反交叉大致相同,交叉弛豫信号可以将温度测量的灵敏度提高一个数量级以上。温度灵敏度估计约为 10 mK/Hz^1/2,体积约为 1 μm^3,由扫描共聚焦显微镜中的聚焦激光激发决定。利用“亮”自旋-3/2 中心和“暗”S=1 中心基态中的交叉弛豫进行温度传感,利用“亮”自旋-3/2 中心基态水平反交叉,可以使用相同的自旋系统实现具有亚微米空间分辨率的集成磁场和温度传感器。
微型光纤磁场传感器由于其对抗电磁干扰和紧凑性而引起了极大的兴趣。然而,材料的固有热力学特性使温度交叉敏感性在感知准确性和可靠性方面都是挑战性的问题。在这项研究中,设计了一个超型多核纤维(MCF)尖端传感器,以区别地测量磁场和温度,随后对此进行了实验评估。新颖的3D打印感应分量由一个碗形的微型站点和一个MCF末端的聚合物微流体浸润的微腔组成,充当两个微型Fabry-Perot干涉仪。通过将铁微球掺入微磁管中来实现微型磁场的磁灵敏度,而微流体浸润的微腔增强了高度敏感的温度感应的能力。在MCF的两个通道中使用此微小的光纤面条设备允许通过确定两个参数的灵敏度系数矩阵来区分磁场和温度。该设备表现出高磁场强度灵敏度,约为1 805.6 pm/mt,快速响应时间约为213 ms,高温灵敏度为160.3 pm/℃。此外,传感器的状况较低,为11.28,表明两参数测量的可靠性很高。所提出的3D打印的MCF-TIP探针通过单个光纤内的多个通道检测多个信号,可以为歧视性测量提供一个超级,敏感和可靠的方案。碗形的微型管理器还提供了一个有用的平台,用于将微观结构与功能材料结合在一起,扩展多参数感应方案并促进MCF的应用。
Published by IFSA Publishing, S. L., 2021 http://www.sensorsportal.com EEG Real Time Analysis for Driver's Arm Movements Identification * Enrico Zero, Chiara Bersani and Roberto Sacile Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy电子邮件:enrico.zero@dibris.unige.it收到:2021年1月22日 /接受:2021年4月3日 /出版:2021年4月30日摘要:文献证明了自动驾驶在道路安全,交通拥堵和能源消费方面的潜在好处。必须由高级传感器和技术支持自动驾驶汽车,以建立对外部环境的可靠意识。但是,具有不同自动化水平的汽车在驾驶任务中需要不同水平的人类干预。在这种情况下,主要问题是确定人与自动化驾驶系统之间的相互作用,这在关键情况下需要详尽地了解驾驶员行为。本文提出了一个基于神经网络的EEG信号分类器,以通过其大脑电动活动来识别驾驶员的手臂运动,当时他/她必须转向右转或左转曲线轨迹。基于时间延迟神经网络(TDNN)的分类器旨在当参与者执行动作以移动他/她的手臂在模拟环境中行驶时抓住真正的方向盘时,旨在对人的脑电图进行分类。分类器的性能与大脑信号识别驾驶员的手臂运动有关的表现表现出了有希望的结果,值得进一步探索。关键字:脑电图,识别,神经网络,自动驾驶汽车,安全性。1。在汽车环境中,研究和创新最近集中在实现自动驾驶汽车上。自动驾驶汽车(AV)是指可以通过安装在船上的设备和传感器来检测环境,并在有限或没有人工干预的情况下开车。根据SAE International Standard 0,将AVS分为六个不同级别的自动化,从0级,驾驶员是即将到来的5级的唯一决策者,即车辆由自动驾驶系统(ADS)完全管理。详细说明,在0级,驾驶员执行所有动态驾驶任务(DDT),这些任务包括车辆运动所需的战术和操作功能。1级是
在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。