随着温度的变化,样品中会产生应力,以防止自由样品弯曲。对于弯曲样品,在增加受力样品的加热速率下没有应力梯度( = 0),导致应力梯度值增加。将数据与在均匀温度场和 20 至 1100°C 的加热速率下获得的膨胀仪结果进行了比较。关键词:隔热罩、航天器、再入、复合材料、高温、玻璃纤维、膨胀仪。介绍用于飞机和航空航天技术的隔热材料 (TSM) 是在极端负载下运行的物体的经典例子。极端条件由温度、作用的机械应力以及外部介质的化学侵蚀程度、强辐射、磨料侵蚀作用等定义。
图11.1.图11.1a 显示了对加的斯湾和直布罗陀海峡进行数据同化后,对实时多学科预报的预测温度的融合估计,图11.1b 显示了对数据同化后的预测叶绿素的融合估计,图11.1c 绘制了与图11.1a 的估计场相关的预测误差,该估计场由 ESSE 方法(Lermusiaux and Robinson,1999;Lermusiaux,1999)执行,图11.1d 描绘了根据预测和预测误差自适应设计的采样轨道,图11.1e 描绘了遥感海面温度场,图11.1f 显示了遥感 (SeaWiFS) 叶绿素场。11.1e 和 11.1f 的数据均被同化到多学科实时预报场中(图11.1a、b、c)。图11.1a、b、c、d 显示在 RR97 演习网站上。
本报告是关于添加剂制造的概念和过程的介绍。使用添加剂制造技术,在该项目的金属(钢)上进行了模拟。在对金属粉末床添加剂制造过程的模拟中,我们得到了主要发现,例如温度场,残留应力和熔体池特性,这些特征发生在金属中。选择性激光烧结是一种著名的金属添加剂制造工艺,用于在床上融化粉末金属,并形成一块所需材料的金属板,并通过一层形成一层,并融化金属粉末。基于许多审查的研究,在将仿真转换为增材制造业工业应用工具的背景下,确定了许多未来的方向。应开发出智能建模方法,必须在增材制造模拟中进一步表征和标准化材料及其特性,并且必须开发模拟,并且需要成为现代数字生产链的一部分。
摘要:轴类零件由于长期在恶劣环境下运行,很多关键零部件遭受腐蚀、磨损等问题,导致零件失效,无法继续服役,对失效零部件进行修复,提高其使用寿命势在必行。设计正交试验方案,基于ANSYS仿真平台,对4140合金结构钢激光熔覆Inconel 718合金粉末过程进行数值模拟,根据热平衡原理推导熔覆层厚度关系方程,建立有限元模型,耦合温度场、应力场和流体场3个模块,并通过不同模块分析,实现对激光熔覆不同过程的监控。最优熔覆参数为激光功率1000 W、扫描速度15 rad/s、光斑半径1.5 mm,热应力最大值为696 Mpa,残余应力最小值为281 Mpa,三因素对热应力最大值的影响程度为:激光功率>光斑半径>扫描速度。熔池在熔化过程中出现熔化“尖角”现象,内部呈现双涡流效应,最大流速为0.02 m/s。由于驱动力不同,凝固过程各个阶段呈现不同的形态。本文对激光熔覆过程进行了多场耦合数值模拟,获得了熔覆层残余应力较低的最优熔覆参数。熔化过程中熔池逐渐长大、扩大,但激光加载时间有限,熔池尺寸和形状最终固定,且熔池内部存在从中心向截面两侧流动的涡流,形成双涡流效应。凝固分为四个阶段,完成熔池液相向固相的转变,形成熔覆层。采用多场耦合数值模拟技术对熔覆层的温度场、应力场和流场进行分析,为后续激光熔覆实验提供熔覆层残余应力、表面质量的理论依据。
图11.1.图11.1a 显示了对加的斯湾和直布罗陀海峡进行数据同化后,对实时多学科预报的预测温度的融合估计,图11.1b 显示了对数据同化后的预测叶绿素的融合估计,图11.1c 绘制了与图11.1a 的估计场相关的预测误差,该估计场由 ESSE 方法(Lermusiaux and Robinson,1999;Lermusiaux,1999)执行,图11.1d 描绘了根据预测和预测误差自适应设计的采样轨道,图11.1e 描绘了遥感海面温度场,图11.1f 显示了遥感 (SeaWiFS) 叶绿素场。11.1e 和 11.1f 的数据均被同化到多学科实时预报场中(图11.1a、b、c)。图11.1a、b、c、d 显示在 RR97 演习网站上。
摘要 沸腾传热是液体的显热传递和汽化引起的潜热传递的结合。为了研究沸腾中的显热传递,液-气多相流中液体的温度测量必须发挥重要作用。尽管已经提出了几种用于沸腾现象温度测量的光学方法,但由于许多沸腾气泡对照明和观察的干扰,直接测量相对较高热流密度下的沸腾温度场具有挑战性。本研究提出了一种新颖的温度测量方法,利用密闭空间、两块透明板之间的夹层空间和双色激光诱导荧光温度测量来测量多个沸腾气泡周围的液体温度分布。密闭空间限制了流体运动,使得可以照亮和观察几乎整个感兴趣的区域。两种荧光染料的强度比显示了局部和时间温度,而无需任何物理探针的侵入。我们成功地观察到了过热液体从传热表面的清除,证明了该方法的实用性。利用该方法从实验数据中提取出的多个位置的温度时间变化与沸腾气泡的行为相一致,并对该方法尚待解决的问题进行了讨论。
摘要。在本文中,提出了定向能量沉积过程中晶粒生长的快速模拟。控制微观结构确实对于获得所需的宏观行为至关重要。我们对温度的快速宏观模拟进行了晶粒生长的占主导地位。所提出的方法重新提出了最新贡献的耦合:(i)DED中的温度模拟,(ii)基于定向的镶嵌更新方法的晶粒生长模型的介质模型,以及(iii)晶粒生长的晶粒晶粒生长模型。一般策略是在整个过程中计算温度场作为时间的函数。在本节目中未解决初始结晶,并引入了任意的初始微观结构以测试模型。计算了由于热循环而引起的晶粒结构的随机演变,并且在整个部分中都遵循了最终的晶粒结构统计。所提出的模型非常快地可以启用大零件的模拟,并且可以执行参数研究或优化循环以调整过程参数。
激光粉床融合工艺越来越多地用于通过熔化并在快速移动的精细焦点激光束下熔化金属零件。需要快速估计所得温度场,融合区尺寸和冷却速率,以确保用最小缺陷的偏置精确零件制造。在这里提出了一个新型的三维分析传热模型,该模型可以在这里迅速可靠地以零件尺度模拟激光粉末床融合过程。体积热源项的构建是为了分析模拟熔体池的演化,其深度与宽度比相当。所提出的分析模型可以模拟零件尺度上的多个轨道和图层的构建速度明显要比文献中报道的所有数值模型要快得多。发现融合区形状和尺寸和冷却速率的计算结果与实验报告的结果非常吻合,该结果是在三种具有多种多样特性的常用合金的构建中,SS316L,TI6AL4V和ALSI10MG。基于分析计算的结果,提供了一组易于使用的过程映射,以估算多个过程条件,以获得一组目标融合区域二月,而无需试用和错误测试。
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。