最近的北极海冰迅速丧失激励了对北极海冰厚度的研究。描述冰厚性演化的全球气候模型需要北极海冰的准确空间温度曲线。但是,在整个北极ICECAP中测量完整温度曲线是不可行的。相反,通过从海底和卫星设备中获取数据可用来测量冰厚度。在本文中,我们开发了一种反向替代的观察者算法,以通过可用的海冰厚度和海冰表面温度来估算北极海冰模型的温度曲线。观察者以严格的方式设计,以将无盐度海冰模型的温度剖面估计误差提高到零。此外,提出的观察者用于通过数值模拟估算具有盐度原始海冰模型的温度曲线。模拟结果表明,我们的观察者设计在三天内成功地估计了海冰温度剖面,这比直接的开环算法快十倍。©2019 Elsevier Ltd.保留所有权利。
电池健康预后是电池管理的关键部分,用于确保安全和最佳用法。在本文中提出了一种基于多域适应性的端到端无传感器差异温度伏安挥发性重建和健康估计状态的新方法。首先,使用部分充电或散布曲线来重建差分温度曲线,从而消除了温度传感器测量的需求。偏差容量曲线和重建的差分温度曲线是输入的,然后在端到端的健康估计状态中使用。最后,为了减少源和目标域之间的域差异,将最大平均差异作为额外的损失包括在于提高差分温度曲线重建和健康估计状态的准确性,并使用未标记的测试电池中的未贴标数据。四个数据集,其中包含具有不同电池化学和格式的实验数据和公共数据,当前模式和速率以及外部条件用于验证和评估。实验结果表明,在不同情况下,提出的方法可以满足健康预后,对于差分温度曲线,平均误差小于0.067°C/V,而健康状况为1.78%。结果表明,与没有传统数据驱动的方法相比,差异温度曲线重建的误差降低了20%以上,健康估计状态的误差降低了所提出的方法的47%以上。
在回流过程中,放置元件的电路板上会形成焊点,因此回流炉腔内的温度设置对 PCB 的质量至关重要。不适当的温度曲线会导致各种缺陷,如裂纹、桥接、分层等。焊膏制造商通常会提供理想的温度曲线(即目标温度曲线),而 PCB 制造商则会尝试通过微调炉的配方来满足给定的温度曲线。传统方法是调整配方,使用热测量设备收集热数据。它调整温度曲线依赖于反复试验的方法,这需要花费大量时间和精力。本文提出了 (1) 配方初始化方法,用于确定用于收集训练数据的初始配方;(2) 基于阶段(升温、浸泡和回流)的输入数据分割方法,用于数据预处理;(3) 反向传播神经网络 (BPNN) 模型,用于预测所需的区域温度以减少实际处理曲线与目标曲线之间的差距;(4) 混合整数线性规划 (MILP) 算法,用于生成最佳配方以最小化温度设置。本文旨在通过一次实验实现所需空气温度的非接触式预测。MILP 优化模型利用了从预测结果中获得的上限和下限约束。该模型已通过不同的初始配方和不同的目标曲线进行了交叉验证。结果,在开始实验的 10 分钟内,生成的最佳配方将与目标曲线的匹配度提高了 4.2%,达到 99%,同时降低了 23% 的能源成本。关键词:回流热配方优化、机器学习、基于阶段的分割、反向传播神经网络(BPNN)、混合整数线性规划(MILP)。
摘要。这项创新研究研究了微通道中含有旋转的微生物的三元杂化纳米流体的流动。分析了磁场,嗜热和布朗运动效应。使用组转换方法将PDES系统转换为ODE。创新的发现检查了牛顿和非牛顿模型,这些模型来自ODES系统。几个图说明了不同参数如何影响速度谱,温度,浓度和微生物。幂律指数值在n = 3时将流体流速度提高约9%,相对于边界层中心的n = 2.5的情况,n = 4时的36%。此外,与纳米流体相比,三元杂化纳米流体的温度更高。当前的结果与研究人员的发现进行了比较,以确认所获得的结果的有效性。当prandtl编号在6到10之间时,Nusselt号码达到45.49%。
了解加速温度曲线对无铅焊接的影响 John L. Evans、Julius Martin 和 Charles Mitchell 奥本大学 阿拉巴马州奥本大学 Bjorn Dahle KIC 热分析 加利福尼亚州圣地亚哥 摘要 由于焊膏供应商定义的峰值温度较高且助焊剂活化时间较长,因此无铅焊接的传统回流曲线通常需要更长的处理时间。当在单个电路设计中集成多种封装类型时,这些曲线变得尤为具有挑战性。在处理具有高热质量的产品设计(例如散热片和金属基板)时,难度会更大。这些设计会在整个电路组件中产生大的热梯度,并进一步增加了寻找“最佳”曲线窗口的复杂性。所有这些问题都导致无铅焊接的回流处理时间显著增加。本文探讨了无铅电子产品大批量生产所需的这些增加的处理时间。并介绍了典型工艺能力和实际生产能力的研究。该研究评估了从小型电路组件(例如手机)到大型电路组件(例如汽车和计算机)的大批量电子产品制造,并研究了一系列“最佳”回流曲线,以加速标准无铅工艺窗口,从而使用自动曲线系统实现目标制造能力。然后,使用这个定义的工艺窗口制造测试载体,并测试其质量(焊料空洞和外观)和焊点可靠性(加速寿命测试)。设计的测试载体包括来自大型物理分布的组件,包括:小型和大型 BGA、QFN 和任何类型的分立元件。在组装过程中,使用虚拟曲线记录工艺曲线窗口的任何偏差。本出版物中提供了质量和可靠性数据,并包括故障分析以确定此建议曲线的能力。采用此曲线策略后,许多制造商可以减少回流无铅电路组件的处理时间,而不会显著降低制造质量或可靠性。此外,本研究为在无铅焊接应用中使用加速曲线速度提供了合理的理解和限制。背景 无铅焊接正在快速发展,与无铅加工相关的制造问题给许多制造商带来了困难。这些困难在过去五年中已得到大量记录,包括基板和元件电镀变化、焊料润湿性和焊点特性的差异以及焊点可靠性变化。5 其中一个更重要的变化是焊接工艺温度的提高,以及这些高温对电子产品质量和加工时间的影响。特别是,焊料(例如 SnAgCu)回流温度的提高,使印刷电路板(具有正常的玻璃化转变温度,T g 为 140 O C-160 OC)暴露在超过 250 O C 的温度下,从而增加了电路板的翘曲。这种变化可能会给产品带来质量问题,尤其是如果进行双面组装加工的话。8,4 回流温度提高的另一个影响是需要延长时间以适应更高的回流温度,同时保持推荐的温度暴露。为了将峰值回流温度从标准共晶 SnPb 焊料的 220 OC - 230 OC 范围提高到 SnAgCu 的 250 OC - 260 OC 范围,推荐的回流曲线时间将显著增加。加工时间的增加将要求制造商降低回流炉的皮带速度或在制造过程中增加炉容量。对于大批量制造商来说,这两种选择都代价高昂。7,9 本研究调查了处理无铅焊接增加的回流温度的替代方法,同时将对许多大批量制造商的财务影响降至最低。本研究重点关注不使用“最佳”回流曲线和保持相同处理窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的处理窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。本调查重点关注不使用“最佳”回流曲线和保持相同加工窗口对大批量产品的影响。(仅考虑大批量组件,因为降低炉带速度以满足推荐的加工窗口不会对小批量制造商产生重大影响)。
我们概括了天然NB 2 O 5溶解模型[G. Ciovati,应用。物理。Lett。 89,022507(2006)]到顺序叠加剂溶解,多层溶解和现实温度曲线,可能适用于其他材料。 该模型应用于不同温度曲线和NB中的两步氧化物溶解的次级离子质谱深度测量值,并发现良好。 在伦敦穿透深度长度上的杂质剖面引起的Meissner筛选响应的背景下,O杂质的浅扩散导致表面附近的峰值超电流密度大大降低。 在此框架中,氧化物溶解和氧扩散可以说明SRF腔中峰值磁场的上升,并在达到最佳烘焙时间后进行烘烤时间和次要压力,与峰值场烘烤温度和峰值烘焙温度和时间以及最近的淬火场测量均吻合。Lett。89,022507(2006)]到顺序叠加剂溶解,多层溶解和现实温度曲线,可能适用于其他材料。该模型应用于不同温度曲线和NB中的两步氧化物溶解的次级离子质谱深度测量值,并发现良好。在伦敦穿透深度长度上的杂质剖面引起的Meissner筛选响应的背景下,O杂质的浅扩散导致表面附近的峰值超电流密度大大降低。在此框架中,氧化物溶解和氧扩散可以说明SRF腔中峰值磁场的上升,并在达到最佳烘焙时间后进行烘烤时间和次要压力,与峰值场烘烤温度和峰值烘焙温度和时间以及最近的淬火场测量均吻合。
材料准备 加工前,ESTALOC™ 59380 NAT055 必须在 100ºC 下干燥 2-3 小时。建议在除湿型干燥机中干燥材料。目标露点应为 -30°C。水分含量必须低于 0.05% 推荐注塑温度曲线:
• 两种模型均在开源 Salinas 高光谱数据集 [14] 上运行,估算图像中每个像素的土地使用类别概率 • 将行星的光谱信息输入到由生成对抗网络 (GAN) 组成的回归模型中,该模型专为检索系外行星的行星大气参数(例如化学物质混合比、温度曲线或云特性)而设计
抽象光伏(PV)综合流动细胞用于电化学能量转换和存储经历了巨大的发展。这种类型的集成流通电池系统的优点包括同时将太阳能存储到可容易用于发电的化学物质中。然而,大多数研究忽略了固有的热暴露以及随之而来的反应堆在太阳下导致的实际挑战。这项工作旨在通过引入基于计算流体动力学的方法来预测光线暴露条件下PV集成电化学流量细胞的温度曲线。此外,我们讨论了流通道块体系结构对温度曲线的影响,以提供有效的过热补救措施的见解和指南。