分离染色体的流式细胞术是细胞遗传学的一种新方法,可快速测量单个中期染色体。在这种方法中,用适当的荧光染料染色的水悬浮液中的染色体被限制在激发染料的窄激光束中高速流动。发射的荧光通过光度法测量,累积的数据形成染色体荧光的频率分布。该频率分布的峰值归因于单个染色体或具有相似荧光的染色体组;峰值平均值与染色体荧光成正比,峰值面积与染色体出现频率成正比。因此,频率分布可作为核型(1、2)。此外,流式分选可根据染色体的染色特性分离染色体(3、4),这与传统的中期染色体纯化方法不同,后者依赖于速度或等密度沉降、区域离心或选择性过滤(5)。纯化单个中期染色体很重要,原因如下。富集或纯染色体部分已进行生化分析,以提供有关 DNA 或蛋白质结构的信息(6),将遗传信息转移到整个细胞(7-9),或通过体外杂交绘制基因图谱(10)。但一般来说,传统技术无法提供足够纯度的染色体,无法进行高分辨率生物或生化研究。通过基于溴化乙锭荧光的流式分选,我们以 90% 的纯度将雄性鹿 Muntiocus muntjak (2n = 7) (4) 的每个染色体和中国仓鼠 M3-1 细胞系的 14 种染色体类型分离成 8 个染色体组 (1, 3)。在我们之前对溴化乙锭染色的人类染色体的研究中,我们仅从雄性 (2n = 46) 的 24 种染色体类型中分辨出 8 个染色体组 (2, 3)。在本研究中,使用 DNA 荧光染料 33258 Hoechst 和改进的仪器,
在凝胶制备过程中,使用浓度为 1.5% 的 TBE 缓冲液 (Tris-Borate-EDTA) 琼脂糖作为核酸电泳的基质。采用了两种不同的方法,以适应染色技术。为了使用 GelRed® 进行电泳后染色,在不添加任何类型的染料的情况下制备凝胶,然后将染料与浓度为 1:9 的上样缓冲液混合。使用该混合物将样品上样到琼脂糖凝胶中,使用 2ul 缓冲液 + GelRed® 和 6ul 扩增的 PCR 产物。然而,为了染色预电泳凝胶,通过预染色将溴化乙锭掺入琼脂糖中。这是通过在融化后将 0.5 μg/mL 的 EtBR 添加到 100 mL 琼脂糖中来实现的。在这两种方法中,电泳技术都是在以下条件下进行的
GAROSE是一种线性聚合物,由A-(L-73)和糖苷键连接的交替残基和L-半乳糖组成。L-半乳糖残留物具有三个至六个位置之间的避别桥(请参见图5-1)。琼脂糖的链形成螺旋纤维,将半径为20-30 nm的超螺旋结构聚集。琼脂糖的凝胶化会导致三维通道的网格,其直径从50 nm到> 200 nm(Norton等人。1986;有关审查,请参见Kirkpatrick 1990)。 商业制备的琼脂糖聚合物被认为每个链中包含半乳糖残基。 但是,琼脂糖不是均匀的:多糖链的平均长度因批量而异,从制造商到制造商。 此外,琼脂糖的较低等级可能会被其他多糖以及盐和蛋白质污染。 这种变异能力可以影响琼脂糖溶液的胶凝温度,DNA的筛分以及从凝胶中回收的DNA的能力,可作为酶促反应中的底物。 可以使用特殊的琼脂糖等级来最大程度地减少这些潜在的问题,这些琼脂糖被筛选为抑制剂和核酸酶的存在以及用溴化乙锭染色后的最小背景荧光。1986;有关审查,请参见Kirkpatrick 1990)。商业制备的琼脂糖聚合物被认为每个链中包含半乳糖残基。但是,琼脂糖不是均匀的:多糖链的平均长度因批量而异,从制造商到制造商。此外,琼脂糖的较低等级可能会被其他多糖以及盐和蛋白质污染。这种变异能力可以影响琼脂糖溶液的胶凝温度,DNA的筛分以及从凝胶中回收的DNA的能力,可作为酶促反应中的底物。可以使用特殊的琼脂糖等级来最大程度地减少这些潜在的问题,这些琼脂糖被筛选为抑制剂和核酸酶的存在以及用溴化乙锭染色后的最小背景荧光。
材料和步骤 微量离心管 20g/l CTAB 研钵和研杵 1.4M NaCl 离心机 0.1M Tris-HCl pH 计 20mM Na2EDTA 称重天平 dH2O 移液器吸头 硼酸 刮铲 Tris 碱 称量皿/纸 EDTA 移液器 DNA 大小标准(Ladder DNA) 烧杯-烧瓶 样品(生菜叶) 6x 凝胶上样缓冲液 琼脂糖 溴化乙锭(0.5 ug /ml) 1X TBE 缓冲液 A. 制备 0.5 M EDTA 原液(500 ml) 称量 93.05 g EDTA 并将其溶解在 200 ml dH 2 O 中,同时用磁力搅拌。用 NaOH 将 pH 值调节至 8.4。用 dH 2 O 将体积调节至 500 ml。
图1。在各种动物DNA中,CpG缺乏与HPA II位点甲基化水平之间的相关性。水平的甲基化水平表示为线而不是点,因为难以准确定量HPA II和MSP I溴化乙锭染色模式之间的差异。CpG缺乏症已被表示为预期频率计算的FRAM的百分比,相关DNA的碱基组成。这些数字是由Setlow(26)和Fram参考15和G. Russell,D。Mkgeoch和J. Subak-Sharpe(Bee,Bee-Fly-Fly和Sea Amone)的未发表的数据收集的最接近的邻居数据的集合。(a)男人,(b)小鸡,(c)小鼠,(d)兔子,(e)BHK细胞(仓鼠),(f)海星,(g)海胆(echinus),(h)海胆(h)海胆(paracentrotus)(paracentrotus),(i)海洋羊水,(i)海洋空?
一些生活在宿主中的内共生体必须调节其宿主的免疫系统,以感染和持久。我们研究了细菌内共生植物对师生多细胞社会变形虫宿主的影响。divyba dictyostelium discoideum的聚集体包含类似于传统多细胞生物的免疫系统的前哨细胞的亚群。前哨细胞隔离并从D. distoideum骨料中丢弃毒素,并可能在防御病原体中起核心作用。我们测量了在paraburkholderia属中被细菌内共生菌感染的D. discoideum骨料中的前哨细胞的数量和功能。感染的D. Discoideum产生的前哨细胞较少,较少的持久性持续细胞,这表明Paraburkholderia可能会干扰其宿主的免疫系统。尽管哨兵细胞受损,但被感染的D. distoiDeum对溴化乙锭毒性的敏感性较小,这表明Paraburkholderia也可能对其宿主具有保护作用。相比之下,D.被Paraburkholderia感染的迪斯科医学会显示出对两种非亲生病原体的敏感性差异。我们的结果扩大了先前的工作,介绍了D. discoideum和Paraburkholderia之间复杂关系的另一个方面,该关系具有很大的潜力作为研究共生研究的模型。
收到2022年12月4日; 2023年8月3日接受;出版于2023年8月17日作者隶属关系:1分子环境微生物学实验室,韩国首尔韩国环境科学与生态工程系,韩国共和国。*信件:Woojun Park,WPARK@韩国。AC。KR关键词:抗生素耐药性;生物膜; DNA甲基化;外排泵;表观遗传学;甲基转移酶。缩写:AR,抗生素耐药性; Azi,阿奇霉素; CCCP,羰基氰化物3-氯苯基氢气; Col,Colistin; Ery,红霉素; Etbr,溴化乙锭; Gen,庆大霉素; IPD,脉间持续时间; Kan,Kanamycin; 6mA,n -6-甲基丹宁; 4MC,n -4-甲基环肽; 5MC,5-甲基胞嘧啶; MEM,MeropeNem; MIC,最小抑制浓度; MTase,甲基转移酶;小睡,核苷相关蛋白;也不,诺福路吗? OMV,外膜外囊泡; PMB,多粘蛋白B; rif,利福平; RM,限制修改; SEM,扫描电子显微镜; SMRT-SEQ,单分子实时测序; TF,转录因子; TMP,甲氧苄啶。†这些作者对此工作数据声明也同样贡献:本文或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用三个补充数据和六个补充表。001093©2023作者
蛋白质的来源:带有克隆的T4 DNA连接酶基因的重组大肠杆菌菌株。单位定义:1个单位定义为将100 ng的DNA片段中的50%与粘性末端连接到50 µl 1x 1x DNA连接酶缓冲液后30分钟在23°C分子重量下孵育后所需的50%的DNA片段:55,292 DALTONS质量控制分析:使用2ffliutial serial dilitial doldutial doldiques soge。在1x DNA连接酶反应缓冲液中制作酶批次的稀释液,并添加到含有双束DNA片段和1X DNA连接酶反应缓冲液的20 µL反应中。在23°C下孵育30分钟,停止并在用溴化乙锭染色的1%琼脂糖凝胶上进行分析。蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。
非小细胞肺癌(NSCLC)是肺癌的主要组织学类型,对人类健康构成严重威胁。越来越多的证据表明,长链非编码RNA(lncRNA)MNX1-AS1参与了癌症(包括肺癌)的发生发展。细胞凋亡和铁死亡是两种受调控的细胞死亡形式,可由抗癌药物诱导。然而,MNX1-AS1在细胞凋亡和铁死亡中的作用尚不清楚。本文我们发现,敲低MNX1-AS1可促进RSL3诱导的NSCLC细胞铁死亡,导致细胞活力下降,活性氧(ROS)和丙二醛(MDA)水平升高。吖啶橙/溴化乙锭(AO/EB)双染、末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(TUNEL)实验及Annexin V/PI双染实验均显示敲低MNX1-AS1可促进紫杉醇诱导的NSCLC细胞凋亡。此外,敲低MNX1-AS1还导致促凋亡蛋白BAX、cleaved caspase-3及PARP1表达增加,抗凋亡蛋白Bcl-2表达减少。RNA测序及实时荧光定量PCR检测发现,敲低MNX1-AS1后,ACSL4表达增加,而ABCG2表达减少。挽救实验显示,ACSL4和ABCG2分别参与了MNX1-AS1介导的铁死亡和细胞凋亡。此外,敲低 MNX1-AS1 可增加 NSCLC 细胞对 RSL3 和紫杉醇组合的敏感性。总之,我们的数据表明 MNX1-AS1 可能是肺癌的潜在治疗靶点,尤其是与铁死亡和/或凋亡诱导药物组合使用时。
背景:这项研究旨在研究miR-497-5p在胃癌(GC)及其可能的机制中的表达和生物学作用。方法:进行实时定量PCR(RT-QPCR),以检测GC和正常组织中的miR-497-5p,以及GC细胞系与正常的胃粘膜细胞(GES-1)(GES-1)。通过计数KIT-8(CCK8)测定和溴化乙锭(EDU)测定法测量了miR-497-5p过表达对增殖的影响。流式细胞仪用于评估细胞周期。分别通过刮擦分析和Transwell分析评估迁移和入侵。MiR-497-5p的基因靶标使用与MirtarPathway数据库结合使用的“ Multimir” R软件包。,然后使用Luciferase Reporter实验来评估GC细胞系中miR-497-5p Mimics的ERBB2活性。此外,还进行了功能实验,以验证miR-497-5p /erbb2对GC细胞表型的影响。结果:与正常组织和粘膜细胞相比,GC组织和GC细胞系中miR-497-5p降低。miR-497-5p显着降低了增殖,迁移和侵袭能力,胃癌细胞的凋亡比升高。生物信息学表明,ERBB2可能是miR-497-5p双酸酶酶报告基因实验的潜在靶标,表明它不良调节的ERBB2 3'UTR荧光素酶活性。与正常组织和细胞相比,GC组织和细胞中ERBB2的表达明显更高。胃癌细胞中ERBB2的过表达显着降低了miR-497-5p对GC细胞恶性行为的抑制作用。结论:MiR-497-5p在GC组织和细胞中显着下调,这通过靶向ERBB2抑制了GC细胞的恶性特征。