摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
图 1 用于体内皮质离子波动记录的无线离子敏感场效应晶体管 (ISFET)。a ISFET 装置的源极和漏极连接到电容器的顶板和底板,与电路并联。b 谐振器的 Q 取决于 ISFET 栅极电极局部的离子浓度。c ISFET 的活性位点通过颅窗嵌入体感皮质表面。d 以无线方式检测到的离子波动在时间域中由 60 秒窗口内谐振器和天线之间的 S11 最小值表示。
公司控股股东为 Anji Microelectronics Co. Ltd. ,无实际控制人。现场检查人
Figure 12.1540-MeV 209Bi ion irradiation 1.7 × 10 11 ions/cm 2 TEM images of AlGaN/GaN HEMT devices: (a) Gate region cross-section; (b) The orbital image of the heterojunction region shown in Figure (a); (c) The image shown in Figure (a) has a depth of approximately 500 nm; (d) Traces formed at the drain; (e) As shown in Figure (d), the trajectory appears at a depth of ap- proximately 500 nm [48] 图 12.1540-MeV 209Bi 离子辐照 1.7 × 10 11 ions/cm 2 的 AlGaN/GaN HEMT 器件的 TEM 图像: (a) 栅极区域截面; (b) 图 (a) 所示异质结区域轨道图 像; (c) 图 (a) 所示深度约 500 nm 图像; (d) 在漏极形成的痕迹; (e) 如图 (d) 所示,轨迹出现在深度约 500 nm 处 [48]
本文介绍了60 Coγ辐射硬度对双极结型晶体管特性和参数的影响,以分析核领域中使用的单个器件的性能变化。双极结型晶体管(BJT)的类型为(BC-301)(npn)硅,晶体管用60 Co源以不同剂量(1、2、3、4和5)KGy进行γ辐射辐照。使用带稳压电源的晶体管特性仪研究了辐照前后双极结型晶体管的特性和参数。结果表明,由于晶体管增益下降和硅电阻率增加,双极结型晶体管的饱和电压V CE(sat)降低。受电离辐射影响的双极结型晶体管的另一个参数是集电极-基极漏电流,电流的大幅增加是由结附近的累积电荷引起的。1.引言
江苏杰杰微电子(又名 JJM)的汽车级 MOSFET 提供 -100V 至 650V 的击穿电压 V DS_Max。栅极源阈值电压 V GS(th) 为高电平(2.7 ~ 3.5V)或低电平(1.5 ~ 1.9V,-1.0 ~ -3.0V)。源极漏极导通电阻 R DS(ON) 低至 0.56mΩ(@ V GS = 10V)。FOM 低至 55。这些 MOSFET 通常组装在高效功率封装中,要么是小型表面贴装型,要么是传统通孔型。这些包括但不限于以下具有优异热特性的封装:PDFN3x3-8L、PDFN5x6-8L/-D、PowerJE®10x12(兼容TOLL)、PowerJE®7x8(兼容sTOLL)、TO-247-3/7L等。所有器件均按照AEC理事会和JEDEC定义的相关标准进行了长期可靠性和质量测试。
这项研究研究了垂直堆叠的CVD生长的RES 2 /MOS 2单极异质结构设备作为现场效应晶体管(FET)设备,其中Res 2上的RES 2充当排水管,而MOS 2在底部充当源。进行了RES 2 /MOS 2 FET设备的电气测量值,并针对不同VGS(闸门电压)(漏极电压)的ID(排水电流)(漏极电压)变化,显示了N型设备特性。此外,阈值电压是在栅极偏置电压上计算的,对应于〜12V。拟议的RES 2 /MOS 2 HeteroJunction FET设备的迁移率为60.97 cm 2 V -1 S -1。利用紫外线光学光谱和可见的紫外线光谱法提取了制造的VDW异质结构的带状结构,揭示了Res 2 /MOS 2界面处的2D电子气体(2DEG)的形成,从而探索了制造Fet的高载流子迁移率。通过跨异构结的屏障高度调节,研究了野外效应行为,并根据跨异构结的电荷传输提出了详细的解释。
一名 66 岁男性因 1 天全身不适、恶心、腹痛和头晕到急诊室就诊。就诊时患者体温 36.5 °C、血压 112/78 mm Hg、心率 112 次/分钟、血氧饱和度 96%(室内空气),呼吸频率正常。患者自诉无过敏,无药物或酒精滥用,目前未使用任何药物或非处方产品。两天前,他接种了第一剂 ChAdOx1 nCOV-19(牛津-阿斯利康)疫苗。患者病史包括意义不明的单克隆丙种球蛋白病(免疫球蛋白 G [IgG] κ )和 2017 年的心脏骤停。当时,他出现全身无力和晕厥发作。由于他的血红蛋白水平升高(210 [正常 130-180] g/L),怀疑是红细胞增多症,并进行了放血疗法。不久之后,患者出现低血压,并进入无脉性电活动停止状态。他被成功复苏,恢复正常,五周后出院回家。他的甲型流感检测结果为阳性,休克归因于病毒感染。本次就诊时,患者的血红蛋白水平显著升高至 224 g/L。他有低白蛋白血症(28 [正常 34-55] g/L)和肌酐水平升高(133 [正常 62-115] μ mol/L)。凝血参数、心脏和肝酶、C 反应蛋白和降钙素原均正常。SARS-CoV-2 和扩展呼吸道病毒检测结果均为阴性。胸部 X 光检查、腹部计算机断层扫描、心电图和创伤超声心动图重点评估均未发现异常(表 1 和表 2)。尽管感染的可能性不大,但我们还是开始静脉输液,并采用哌拉西林 - 他唑巴坦进行经验性治疗。12 小时后,患者已接受超过 6 L 的液体,但血压已降至 93/60 mm Hg,心率为 125 次/分钟,红细胞增多症持续存在(血红蛋白 223 g/L)。我们将患者送入重症监护病房 (ICU)。由于没有其他导致休克的原因,我们诊断为全身毛细血管渗漏综合征 (SCLS)。