本文介绍了二次量子变分蒙特卡罗 (Q 2 VMC) 算法,这是量子化学中的一种创新算法,可显著提高求解薛定谔方程的效率和准确性。受虚时间薛定谔演化的离散化启发,Q 2 VMC 采用了一种新颖的二次更新机制,可与基于神经网络的假设无缝集成。我们进行了大量的实验,展示了 Q 2 VMC 的卓越性能,在跨各种分子系统的波函数优化中实现了更快的收敛速度和更低的基态能量,而无需额外的计算成本。这项研究不仅推动了计算量子化学领域的发展,还强调了离散化演化在变分量子算法中的重要作用,为未来的量子研究提供了一个可扩展且强大的框架。
量子绝热定理是时间相关量子系统的基础,但能够定量表征多体系统中的绝热演化却是一项挑战。这项工作表明,使用适当的状态和粒子密度度量是一种可行的方法,可以定量确定量子多体系统动态中的绝热程度。该方法还适用于有限温度下的系统,这对于量子技术和量子热力学相关协议非常重要。通过与将量子绝热标准扩展到有限温度所获得的结果进行比较,讨论了考虑记忆效应的重要性:结果表明,这可能会产生构造上为准马尔可夫的错误读数。由于所提出的方法可以通过仅跟踪系统局部粒子密度来表征绝热演化的程度,因此它可能适用于非常大的多体系统的理论计算和实验。
量子绝热定理是时间相关量子系统的基础,但能够定量表征多体系统中的绝热演化却是一项挑战。这项工作表明,使用适当的状态和粒子密度度量是一种可行的方法,可以定量确定量子多体系统动态中的绝热程度。该方法还适用于有限温度下的系统,这对于量子技术和量子热力学相关协议非常重要。通过与将量子绝热标准扩展到有限温度所获得的结果进行比较,讨论了考虑记忆效应的重要性:结果表明,这可能会产生构造上为准马尔可夫的错误读数。由于所提出的方法可以通过仅跟踪系统局部粒子密度来表征绝热演化的程度,因此它可能适用于非常大的多体系统的理论计算和实验。
我们从理论和数值两个角度研究了具有周期性踢动驱动势的Floquet非Hermitian系统波包在动量空间中的动力学。我们推导出量子共振条件下随时间演化的波包的精确表达式。利用这一解析表达式,我们可以更深入地研究定向输运、能量扩散和量子扰乱的时间行为。我们发现,通过调节踢动势实部和虚部之间的相对相位,可以有效地操控定向传播、能量扩散和量子扰乱:当相位等于π/ 2时,我们观察到最大的定向电流和能量扩散,而受PT对称性保护的扰乱现象最小;当相位为π时,定向输运和能量扩散都受到抑制,相反,非厄米性可以增强量子扰乱。我们讨论了我们的发现的可能应用。
本文介绍了几类与物理学和动态系统理论密切相关的新数学结构。这些结构中最普遍的一种称为广义随机系统,它们共同包含许多重要的随机过程,包括马尔可夫链和随机动态系统。然后,本文陈述并证明了一个新定理,该定理建立了任何广义随机系统与酉演化的量子系统之间的精确对应关系。因此,该定理导致了量子理论的新表述,以及希尔伯特空间、路径积分和准概率表述。该定理还从第一原理的角度解释了为什么量子系统基于复数、希尔伯特空间、线性酉时间演化和玻恩规则。此外,该定理表明,通过选择合适的希尔伯特空间,并选择适当的幺正演化,可以在量子计算机上模拟任何广义随机系统,从而可能为量子计算开辟一系列新颖的应用。
近年来,量子物质的非厄米描述取得了令人瞩目的进展 [1–13],在理解其拓扑性质或异常点(临界点的非厄米对应物)的物理特性等核心方面取得了重大进展 [14]。在这里,我们使用单光子干涉术,通过模拟执行缓慢参数斜坡时缺陷的产生,重建了非厄米 Kibble-Zurek 机制及其对异常点的独特标度行为 [15]。重要的是,我们还能够实现高阶异常点,从而可以通过实验了解它们理论上预测的特征性 Kibble-Zurek 标度行为。我们的工作代表着在增加非厄米量子时间演化的实验复杂性方面迈出了关键一步。因此,它也进一步推动了将前沿从纯单粒子物理学转移到多体领域中日益复杂的环境的探索。
我们基于Hayden-Preskill Thought实验应用了量子传送方案,以量化给定量子演化的争吵。用来诊断出在与嘈杂的量子设备造成的脱碳效果的情况下诊断信息时的直接测量相比,它具有优势。我们通过将协议应用于两个物理系统来演示该协议:Ising自旋链和SU(2)晶格Yang-Mills理论。为此,我们在数字上模拟了哈密顿形式主义中两种理论的时间演变。基于Kogut-susskind形式主义,实施了Yang-Mills理论,并以适当的Hilbert Space截断。在两腿梯子的几何形状上,具有最低的非平凡旋转表示,它可以映射到自旋链中,我们称之为Yang-Mills-sising模型,也直接适用于将来的数字量子仿真。我们发现,阳米尔斯林模型显示了在晚期争夺信息的信号。
然后可以在给定的情境中测试这些机制,并用它们来预测和解释新情境中的事件。3. 规模、比例和数量。在考虑现象时,关键是要认识到不同规模、时间和能量尺度下的相关内容,以及认识到规模、比例或数量的变化如何影响系统的结构或性能。4. 系统和系统模型。定义所研究的系统(指定其边界并明确该系统的模型)为理解和测试适用于整个科学和工程领域的想法提供了工具。5. 能量和物质:流动、循环和守恒。跟踪能量和物质流入、流出和在系统内的流动有助于人们了解系统的可能性和局限性。6. 结构和功能。物体或生物的形成方式及其子结构决定了它的许多属性和功能。7. 稳定性和变化。对于自然系统和人造系统而言,稳定性条件和系统变化率或演化的决定因素都是研究的关键要素。