与上述内容大不相同。同样重要的是要承认,用于设计 Brattle Group 的分析和市场概览的方法简化了假设和结果之间的关系,可能无法准确反映。Brattle Group 不会、也不打算、也不应让 NYISO 或收到本报告的任何其他方推断任何有关未来结果可能性的陈述。分析和市场概览仅适用于编写时的明确目的以及截至本报告发布之日。与本报告或本报告主题有关的任何决定或对本报告中包含的任何信息的使用均由读者自行负责。
常用技术包括:� POTS – 普通老式电话服务。最初设计用于语音,现在可承载语音、传真和互联网流量。� ISDN – 综合业务数字网。这是首次尝试优化电信网络以提供语音以外的服务,并已在欧洲广泛使用。� 租用线路 – 为用户提供固定的点对点连接。它们有多种形式和多种带宽。� 无线本地环路 – 用固定无线链路取代部分铜缆网络。这在某些情况下具有优势,但尚未普遍适用。� GSM – 全球移动通信系统。这是欧洲迅速扩张的数字移动电话网络。它适用于语音,并提供有限的数据(包括互联网)功能。� IP – 互联网协议。它旨在用于互联网通信,但应用范围越来越广。在其目前的标准形式下,它存在局限性,这使得它难以用于某些服务,尤其是语音。存在一些增强功能,可以解决其中一些问题。
一般交流驱动器布置 每个交流驱动器都包括交流市电电源和负载之间的三个主要部分。如图 1 所示。转换隔离并将市电电压更改为转换部分的电平和配置。转换部分将转换后的市电电压转换为可调电压、可调频率的交流电压,以匹配所连接负载的速度和扭矩要求。利用部分由交流电机和机械设备(如齿轮和联轴器)组成。驱动器转换部分包括直流转换、能量存储和切换。驱动器的转换部分使用半导体组合将市电电压转换为直流电压和电流。此直流电存储在电感器或电容器中,然后传递到切换部分。切换部分将存储的直流电压或电流连接到交流电机的连续相中。频率、电压和电流经过调节以满足负载的需求。
本白皮书首先分析了5G-Advanced的网络演进架构,并从人工智能、融合、使能三个特点阐述了5G-Advanced的技术发展方向。人工智能代表网络AI,包括充分利用机器学习、数字孪生、识别与意图网络等,提升网络智能运维能力。融合包括5G与行业网络融合、家庭网络融合、天空地网络融合,实现融合发展。使能是5G交互通信、确定性通信能力的增强。增强现有的网络切片、定位等技术,更好地助力行业数字化转型。2021年12月,3GPP SA全会确定了SA2中Release 18研究的内容。因此,本白皮书相应更新至2.0,以涵盖最新的技术研究进展。
本章重点介绍过去四十年来以人为本的设计 (HCD) 在航空航天系统中的发展。大约在 20 世纪 80 年代,人为因素和人体工程学首先从物理和医学问题研究转向认知问题。计算机的出现带来了人机交互 (HCI) 的发展,随后扩展到数字交互设计和用户体验 (UX) 领域。我们最终有了交互式驾驶舱的概念,不是因为飞行员与机械物体交互,而是因为他们使用计算机显示器上的指点设备进行交互。自 21 世纪初以来,复杂性和组织问题日益突出,以至于复杂系统设计和管理成为焦点,人们关注的是人为因素和组织设置的作用。今天,人机系统集成 (HSI) 不再仅仅是一个单智能体问题,而是一个多智能体研究领域。系统是系统的系统,被视为人和机器的代表。它们由静态和动态连接的结构和功能组成。当它们工作时,它们就是活的有机体,会产生需要在进化过程中考虑的新兴功能和结构(即在不断重新设计中)。本章将更具体地关注人为因素,例如以人为中心的系统表征、生命关键系统、组织问题、复杂性管理、建模和模拟
摘要:第五代移动网络(5G)作为工业4.0的基本推动者,通过人工智能和云计算(CC)促进了数字化转型和智能制造。然而,B5G被视为一个转折点,它将从根本上改变无线通信实践以及大众生活的现有全球趋势。B5G预见了一个物理与数字融合的世界。本研究旨在展望5G之后的世界,向6G的过渡将成为未来无线通信技术的主导。然而,尽管取得了一些进展,但无延迟、前所未有的互联网速度和外星通信时代的梦想尚未成为现实。本文探讨了5G-6G过渡在实现这些更大理想时可能面临的主要障碍和挑战。本文为6G提供了愿景,促进了技术基础设施、挑战和研究,最终实现了“技术为人类服务”的目标,并为弱势群体提供了更好的服务。
摘要 — 量子密钥分发 (QKD) 是一种能够保持信息论安全性的对称密钥协商协议。鉴于 QKD 网络的最新进展,它们已经从学术研究发展到一些初步应用。QKD 网络由两个或多个通过光纤或自由空间链路互连的 QKD 节点组成。密钥在任意一对 QKD 节点之间协商,然后可以将其传递给各个区域的多个用户,以确保长期保护和前向保密。我们首先介绍 QKD 基础知识,然后回顾 QKD 网络的发展及其在实践中的实现。随后,我们描述了通用的 QKD 网络架构、其元素以及其接口和协议。接下来,我们将深入概述相关的物理层和网络层解决方案,然后介绍标准化工作以及与 QKD 网络相关的应用场景。最后,我们讨论了未来的潜在研究方向并为 QKD 网络提供了设计指南。
• 3D 合成视觉 – 在主飞行显示器 (PFD) 上实时显示三维地形、障碍物和交通状况。• 空中高速公路 (HITS) 导航 – 根据当地地形和飞机位置,在 PFD 上为飞机提供 3D 高速公路供其飞行。PFD 上显示一系列不断减小的方块,供直升机飞行。• 地理参考悬停矢量 – 允许您悬停在已知点上。• 直升机地形感知系统 (HTAWS) – 全球地形数据库与 GPS 位置相结合。• 图形飞行管理系统 (FMS) – 中央导航和通信管理系统。• 全彩色、高分辨率、阳光下可读(1,000 尼特)LCD 屏幕,亮度完全可调 • 双重冗余背光 • 输入:ADHRS、GPS 接收器(全部包含) • DO-178B、A 级软件 – 最高批准级别是 IFR 许可的关键要素。• NVIS-A 和 NVIS-B 夜视镜兼容性 • 最后五次飞行的数字飞行性能记录 • 冗余显示器/传感器架构 – 显示器故障将恢复到主飞行显示器。• 符合 RNP 0.3/BRNAV/PRNAV 标准 – 允许飞机使用 GPS 进行精确导航。
1979 年 12 月 3 日,日本电信电话公司 (NTT) 推出了世界上第一个使用蜂窝系统的移动通信服务。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也取得了进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展为简单的文本消息。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,并发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,LTE(长期演进)技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。
1979 年 12 月 3 日,移动通信使用蜂窝系统开始了第一代移动通信。此后,移动通信的无线接入技术每 10 年就会演变成新一代系统。随着技术的发展,服务也在不断进步。从第一代 (1G) 到第二代 (2G),服务主要是语音通话,但最终发展到简单的短信。第三代 (3G) 技术使任何人都可以使用以“i-mode”为代表的数据通信服务,发送图片、音乐和视频等多媒体信息。在第四代 (4G) 中,通过 LTE (长期演进) 技术实现了超过 100 Mbps 的高数据速率通信,导致智能手机的普及和各种多媒体通信服务的出现。4G 技术以 LTE-Advanced 的形式不断发展,现在已实现超过 1 Gbps 的最大数据速率。进一步的技术进步使第五代 (5G) 成为现实。 DOCOMO于2020年3月25日利用其5G移动通信系统[1-1]推出5G商用服务。