食物、衣服和住所是生活的三大基本必需品。食物可以被视为人类成长和生存的重要组成部分。因此,烹饪的来源是我们日常生活中最重要的事情之一。烹饪能源有多种,如煤油、液化石油气、木柴和可再生能源等,其中一种就是太阳能烹饪,它是一种可再生能源。太阳能烹饪的限制在于烹饪只能在白天进行。如果为太阳能灶提供热能存储系统,则可以在傍晚或夜间烹饪食物。在过去的几十年里,烹饪行业使用了各种各样的太阳能灶,包括箱式太阳能灶、平板式太阳能灶、抛物面碟式太阳能灶、真空管式太阳能灶和舍弗勒碟式太阳能灶,这些灶具有显热、潜热和联合储热技术。因此,本文总结了对可用的热能储存材料(显热、潜热和组合储热材料)的研究和分析,以便在白天储存热量并将其用于白天以外的目的,用于太阳能烹饪应用。本研究还比较了用于烹饪的显热、潜热和组合储热系统。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的恢复与破缺完美地体现在共振参数和密度分布随势深的演变中:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
在颗粒和准颗粒的现象学水平上,超导体(伦敦,金兹伯格 - 兰道,bcs和其他理论)中的超潮流产生机制有不同的方法。在基本场上理论层面上,我们将超流动性的本质归因于包含电磁场的计量量的物理学。在经典的力学和电动力学中,该规格电位是一个主要实体,因为它没有由其他数量定义。但是,在量子力学的框架中,我们可以定义由复杂标量场定义的量子规势。量子规势可以被视为电磁场基底态的局部拓扑非平凡的激发,其特征在于指数等于磁通量的整数数量。从普通和量子计势中产生了量规不变的有效向量电势,可以像电场和磁场一样观察到。这导致了Maxwell方程的修改:尺寸长度的常数和电磁相互作用的定位。所有这些情况都赋予了识别Supercurrent的有效向量潜力的方法。我们还考虑了电磁场的新形式与Dirac Spinor场此处介绍的物质的相互作用。这种带电的费米 - 摩擦形式的特征是两个参数。从现象观点的角度来看,这些参数源自电子电荷和质量,但总的来说,它们应由系统本身定义。当然,电磁相互作用在扩展电动力学中的定位是保守的。仅当电磁场仅由带有磁通量的Quange势势呈现电磁场时。电磁相互作用的定位可以视为量子物理效应和超导性的主要物理原因。我们相信,这将有助于阐明基础野外理论方法框架中所谓的高温超导性。在任何情况下,对电磁场的新形式的实验观察(“超导光”)是第一个需要的步骤。
Ї - „™‰‡„•™•Š'™••–š‡‡‡•••'ˆ‡'”››‡‡‡‡‡‡——— ach ȍȍ› - ••ȋƒ„' - –͕–š'-•••••…šƒ”ƒ… - ‡••ȍȍ‡‰›„› - ‡ȋȋȋȋ͕͔͖͘‹͕͔͖͘‹›'›'› - ‡•‡•••ȋ' „› - ‡ȋȋ͕͔͖͘‡‰ƒ„› - ••ȋƒ''' - - ͕„找到势€™………Šƒ”ƒ… - ‡• ͕‡“›„› - ‡ȋȋȋ͕͔͖͘›‰›„› - •••ȋƒ'' - - - ͕–'-͕ - ͕ - ‹€€梯€…šƒ`ƒ”ƒ-‡•‡••ȍ Ž™…šƒ”ƒ…‡”•ȍȍ›„› - ‡ȋȋȋ͕͔͖͘‡–ƒ„› –‡•ȋȋ'' - - ͕͕——— ‹‹– q×q ȋƒ„' - –͕•‡Š–×q×™…Šƒ”ƒ… - ‡”•ȍȍ '––ƒ„›–‡ ȋ Ȍ ί ͕͔͖͘ ‡––ƒ„›–‡• ȋƒ„'—– ͕ •‡'–‹ŽŽ‹' …Šƒ”ƒ…–‡”•Ȍ ͕ ”' –'„›–‡ ȋ Ȍ ί ͕͔͖͘ '––ƒ„›–‡• ȋƒ„'—– ͕ '…–‹ŽŽ‹' …Šƒ”ƒ…–‡”•Ȍ
Code 45 为美国海军和盟国海军无人潜航器 (UUV)、无人机 (UAV)、潜艇和水面舰艇发射系统以及潜射导弹及有效载荷提供科学、工程和舰队支持服务。该团队设计、开发、集成、测试、部署和维护 UUV 和 UAV;水下武器和对抗措施的发射、回收、存放和处理系统;以及武器和有效载荷(包括战斧和鱼叉导弹)的支持系统。Code 45 的目标是提高舰队的战术和防御灵活性、模块化和有效载荷量,同时保持可持续性和经济实惠。这个多元化的团队通过提供全方位支持来支持这一目标,从尖端研究到在潜艇上并肩提供操作员支持。
伪自旋对称性 (PSS) 是一种与狄拉克旋量的下部分量相关的相对论动力学对称性。本文以单核子共振态为例,研究了 PSS 的守恒与破缺,采用格林函数方法,该方法提供了一种新颖的方法来精确描述窄共振和宽共振的共振能量和宽度以及空间密度分布。PSS 的守恒与破缺在共振参数和密度分布随势深的演变中完美地展现出来:在 PSS 极限下,即当吸引标量和排斥矢量势具有相同的大小但相反的符号时,PSS 完全守恒,PS 伙伴之间的能量和宽度严格相同,下部分量的密度分布也相同。随着势深的增加,PSS 逐渐破缺,出现能量和宽度分裂以及密度分布的相移。
我们用数值方法研究了具有 PT 对称势的耦合踢动转子中的量子输运。我们发现当复势虚部幅度超过阈值时,波函数会发生自发的 PT 对称性破缺,而耦合强度可以有效调节该阈值。在 PT 对称性破缺状态下,由周期性踢动驱动的粒子在动量空间中单向运动,标志着定向电流的出现。同时,随着耦合强度的增加,我们发现从弹道能量扩散转变为一种改进的弹道能量扩散,其中波包的宽度也随时间呈幂律增加。我们的研究结果表明,由粒子间耦合和非厄米驱动势相互作用引起的退相干效应是造成这些特殊输运行为的原因。
摘要 纠缠量子粒子是纳米尺度上携带量子信息的一种有吸引力的选择,对其中某个粒子的操作会瞬间影响另一个纠缠粒子的状态。然而,在传统的时间相关量子传输模拟方法中,完整描述纠缠需要大量的计算工作,几乎是无法承受的。考虑到电子,分析其纠缠的一种方法是通过 Wigner 形式对库仑相互作用进行建模。在本文中,我们通过采用合理的近似来降低两个相互作用电子时间演化的计算复杂度。具体而言,我们用局部静电场代替电子-电子相互作用的 Wigner 势,该势是通过势的谱分解引入的。证明了对于电子-电子系统的某些特定配置,引入的近似是可行的。我们还分析了纯度,即量子态的最大相干性,相应的分析表明,引入的局部近似可以很好地解释由库仑相互作用引起的纠缠。
