光致变色分子在光刺激下会改变其物理化学性质,包括吸收光谱、折射率、介电常数和氧化还原电位,具有从光学数据存储到生物成像等多种潜在应用。1–13 光致变色分子的用途可以简单地分为两种类型:作为单分子水平的开关或作为聚集体中的活性元素。具体而言,后者对于开发下一代先进材料非常有趣。例如,聚集体的典型形式之一是晶体。与晶体中的光化学反应相关的单个分子的分子结构变化会导致晶体形状的宏观变化。14–16 这种晶体可用于不需要任何电子线和物理接触的光致动器。聚集体的另一种代表性应用形式是纳米粒子。由光致变色分子和荧光团组成的纳米粒子基于从荧光团到光致变色分子的福斯特共振能量转移,表现出有效的光可逆荧光开/关切换行为。 17,18 这些纳米粒子可用于超分辨率荧光显微镜。此外,最近有报道称,强纳秒脉冲激光激发由
利用脉冲激光激发和加工材料已经成为科学和工业领域的多功能工具。例如,脉冲激光加热用于产生冲击波,用于动态压缩研究1-3、光声材料光谱4-6或工业应用,如激光烧蚀7,8、激光切割9,10或激光打标11。在许多其他实验和应用中,激光加热虽然是一种不受欢迎的副作用,但必须加以考虑。当今商用脉冲激光源发出的脉冲持续时间从几飞秒到几百纳秒不等。因此,激光加热的相关时间尺度至少延伸超过五个数量级。除了脉冲持续时间之外,光与物质的相互作用还取决于其他参数,如激光波长λ、激光能量密度和脉冲重复率。通常,这些量的最佳组合是在实证研究中找到的。本文推导出一个参数来描述不透明介质吸收激光脉冲后的热扩散动力学。该参数仅取决于材料常数和激光脉冲持续时间,并允许快速估算样品表面产生的峰值温度。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
摘要:我们通过实验演示了热电传感器与纳米天线的耦合,这是检测红外能量的另一种选择。我们制造并测试了两种基于 Yagi-Uda 技术的纳米天线设计(单元件和阵列)变体和一个单独的纳米热电结阵列。纳米天线经过调整,可在中心波长 1550 nm(193.5 THz)光学 C 波段窗口处运行和响应,但它们在受到各种波长(650 nm 和 940 nm)激光激发时也表现出共振响应。纳米天线中的辐射感应电流与纳米热电传感器耦合,根据塞贝克效应产生了电位差。相对于参考纳米天线的均匀热测量,实验证实了所提出的纳米天线的检测特性;单元件检测到峰值百分比电压升高 28%,而阵列检测到中心波长处的峰值百分比电压升高 80%。与最先进的热电设计相比,这是首次根据基于塞贝克原理的平面设计实验报告如此高的峰值百分比电压。
在低丰度生物标志物的癌症和传染病的情况下,利用荧光记者使用荧光记者的诊断测定方法可以通过有效收集发射的光子进入光学传感器来达到检测的下限。在这项工作中,我们介绍了一维光子晶体(PC)光栅界面的合理设计,制造和应用,以实现无棱镜的无棱镜,无金属和客观的无目标平台来增强荧光发射收集效率。PC的引导模式共振(GMR)具有互联状态,可与辐射偶极子的激光激发(532 nm)和发射最大(580 nm)匹配,以在优化的条件下到达。使用银纳米颗粒的光质量杂交纳米工程>> 110倍的转向荧光增强功能,使样品放置在兴奋源和探测器之间,这是直线的。根据实验和仿真,我们根据辐射等离子体模型仔细检查杂交底物的极化发射特性,提出了一个辐射的GMR模型。在这里使用简单检测仪器实现的增强荧光强度提供了亚纳米摩尔灵敏度,以提供通往护理点场景的路径。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
被捕获的离子可以通过用激光激发其内部电子态形成有效的量子二能级系统,从而充当有前途的可扩展量子比特,而离子在谐波势阱中的量化运动状态使我们能够通过库仑力与相邻离子相互作用。因此,高保真操作需要精确了解系统的运动退相干时间,即离子的运动状态不再可靠地被知道或不再能被控制的时间。现有的运动相干性测量通过将运动状态与激光驱动的内部跃迁耦合来间接控制和测量运动状态,因此,它们可能容易出现电子状态退相干和激光幅度或频率波动。在本论文中,我们应用了之前提出的直接电场操纵被捕获离子运动相干态的机制,在一种新的自由进动序列中测量运动相干时间。该序列由连续谐振子相空间中两个相位差可变的相干位移组成,由可变的延迟时间分隔。在 4 开尔文的超高真空室中,使用位于铌表面电极阱上方 50 微米处的锶-88 + 离子,我们测量了 (24 ± 5) 𝑠 − 1 的运动退相干率。该测量速率与系统的预期退相干率相匹配,其中捕获离子加热在幅度上超过其他形式的退相干,这很可能是我们系统的情况。
展示了基于 SiC 原子级自旋中心能级交叉弛豫的全光学测温技术。该技术利用了三重基态 S=1 中心零场分裂的巨大热位移,光致发光无法检测到(所谓的“暗”中心)耦合到相邻的自旋 3/2 中心,这些中心可以进行光学极化和读出(“亮”中心),并且不需要射频场。EPR 用于识别缺陷。交叉弛豫线的宽度几乎比全光学测温中使用的激发态能级反交叉线的宽度小一个数量级,并且由于由激发态的寿命决定,因此无法显着减小。由于温度偏移和信号强度与激发态能级反交叉大致相同,交叉弛豫信号可以将温度测量的灵敏度提高一个数量级以上。温度灵敏度估计约为 10 mK/Hz^1/2,体积约为 1 μm^3,由扫描共聚焦显微镜中的聚焦激光激发决定。利用“亮”自旋-3/2 中心和“暗”S=1 中心基态中的交叉弛豫进行温度传感,利用“亮”自旋-3/2 中心基态水平反交叉,可以使用相同的自旋系统实现具有亚微米空间分辨率的集成磁场和温度传感器。
摘要:按层材料工程产生了有趣的量子现象,例如界面超导性和量子异常效应。但是,探测41个电子状态逐层仍然具有挑战性。这是42理解磁性拓扑绝缘子中拓扑电子状态的层起源的难度来体现的。43在这里,我们报告了磁性44拓扑绝缘子(MNBI 2 TE 4)(BI 2 TE 3)上的层编码频域光发射实验,该实验表征了其电子状态的起源。45红外激光激发启动连贯的晶格振动,其层索引由46个振动频率编码。然后,光发射光谱谱图跟踪电子动力学,其中47层信息在频域中携带。这种层频面的对应关系揭示了拓扑表面状态从顶部磁性层从顶部磁性层转移到埋入的49二层中的48波函数重新分配,从而核对了在50(MNBI 2 TE 4)中消失的破碎对称能量间隙(BI 2 TE 4)(BI 2 TE 3)及其相关化合物。可以将层频率对应关系51在一类宽类的范德华52个超级晶格中划分为逐层划分的电子状态。53