执行Attosond-Pump Attosent-probe光谱(APAPS)的能力是超快科学的长期目标。第一次开创性的实验证明了APAP的可行性,但重复率较低(10至120 Hz),并且现有设置的大量足迹迄今妨碍了对APAP的广泛利用。在这里,我们使用1 kHz的商业激光系统,在空心核心纤维中直接压缩后进行了两种座椅,以及紧凑的高谐波生成(HHG)设置。后者可以通过使用过量的HHG几何形状并利用HHG培养基中驱动激光器的瞬时蓝光来实现强烈的极端脉络膜(XUV)脉冲的产生。产生了近距离的脉冲,如一色和两色Xuv-Pump Xuv-probe实验所证明的那样。我们的概念允许在许多实验室的极短时间内进行选择性抽水和探测,并允许对其他泵种技术无法访问的基本过程进行调查。
光学频率梳是精密计量实验必不可少的工具,其应用范围从痕量气体的远程光谱传感到光学原子钟的表征和比较,以实现精密计时,以及探索标准模型以外的物理现象。本文介绍了基于自由空间激光器和 Er/Yb 共掺杂玻璃增益介质的电信波段自锁模频率梳的架构和完整特性。该激光器为基于 Er:光纤激光器的频率梳提供了一种强大且经济高效的替代方案,同时提供与 Ti:蓝宝石激光系统类似的稳定性和噪声性能。最后,使用两个超稳定的 1157 nm 和 1070 nm 光学参考进行高稳定性频率合成,并通过将这些参考划分到微波域来产生低噪声光子微波,证明了 Er/Yb:玻璃频率梳的实用性。
摘要我们报告了能够与41 K和87 RB的Bose-Einstein冷凝物进行原子干涉测量法的设计和构建。该设备的设计旨在连续两个任务发起VSB-30发声火箭,并有资格承受在20-2000 Hz之间的频率范围内的预期振动载荷,在频率范围内和预期的静态载荷范围内,在播种过程中,在播种和重新居住的期间静态载荷之间。我们提出了包括物理包,激光系统,电子系统和电池模块的科学有效载荷的模块化设计。专用的车载软件提供了预定义实验的很大程度上自动化的过程。要在实验室和飞行模式下安全操作有效载荷,已经实施了热控制系统和地面支撑设备,并将提出。此处介绍的有效载荷代表了与卫星上超速原子的物质干涉测量法的未来应用的基石。
一个主题是为期三天的演讲计划中的无所不在:人工智能(AI)正在为研究机构,激光系统提供商及其用户开辟新的视野。的确,AI正在成为一种非常有效的工具,尤其是当与动态发展数字化并更加紧密地结合感觉过程监测时。这是因为沿工业流程链生成了大量数据,因此,由于AI,公司可以将其处理为具有附加值的信息。在AKL'24举行的GERD HERZIGER会议上,Fraunhofer ILT导演Haefner与该行业的三位顶级经理讨论了这对激光技术的价值创造和商业模式的意义:Hagen Zimer博士,Hagen Zimer博士,董事会成员兼Trumpf se + Co. KG的Laser Technology董事会成员兼首席执行官KG。 (CH)和连贯的激光业务执行副总裁Christopher Dorman博士。
摘要 量子信息处理的未来需要稳定的硬件平台来可靠、低错误率地执行量子电路,以便在其基础上构建工业应用的解决方案。与其他平台一样,离子阱量子计算目前被证明非常适合从桌面实验室实验过渡到机架式本地系统,这些系统允许在数据中心环境中运行。在数据中心内的量子计算机上成功实现工业应用之前,需要解决几个技术挑战,并需要优化和自动化控制许多自由度。这些必要的发展包括从根本上定义所支持指令集的离子阱架构、限制量子比特操作质量的控制电子设备和激光系统,以及基于量子比特属性和门保真度的量子电路优化编译。在本章中,我们介绍了离子阱量子计算平台,介绍了 Alpine Quantum Technologies 离子阱硬件和机架式量子计算系统的当前技术水平,并重点介绍了执行堆栈的各个部分。
在这项工作的第一部分中,首次使用超冷钙原子 (12 µ K) 实现了 657 nm 的光学钙频率标准,并使用目前不确定性最低的频率梳发生器创建了过渡频率在 1 , 2 · 10 − 14 的世界中确定。以前对频率标准不确定性的重要贡献已降低。通过使用超低原子,多普勒效应的影响可以降低至1 Hz。通过改善激光系统并优化淬火冷却,达到了高达4·10 10 cm -3的集合密度。结合使用状态选择性检测方案对频移进行更灵敏的检测,可以将冲击对不确定性的影响降低到 0 . 3 · 10 − 16 。 。使用光缔合光谱对碰撞进行进一步研究,将基态散射长度的可能值限制在 50 a 0 到 300 a 0 的区间。首次对用于查询时钟转换的激光脉冲中激光相位随时间变化而产生的频移进行了定量检查和校正。
远程监测痕量大气气体(标签)的浓度(包括许多有害混合物)仍然是一个紧迫的问题。IR区域,尤其是2.5-14 µm范围,对于大气发声非常有前途,因为该范围包括几乎所有大气气体的强吸收线。此外,IR范围包括六个透明窗口。为了覆盖近红外和中期范围,通常使用非线性晶体的光学参数振荡器(OPO)的辐射[1-3]。在这项工作中,我们考虑了一个激光系统(在Solar Laser System Company设计),该系统是设计差异吸收激光龙的一部分;它提供了3–4 µM光谱范围内的纳秒辐射脉冲的可调节产生。根据激光的规格,估计了在此光谱范围内HCl和HBR沿对流层路径的可能性。提出了搜索信息波长的结果以及在上述气体的差分吸收声音中计算激光雷达回声信号的结果。
Peter Delfyett 于 1993 年加入 UCF,目前是大学杰出教授、Pegasus 教授和光学、电子与计算机工程与物理学信托讲座教授。2003 年,Delfyett 博士创立了“Raydiance, Inc.”这家衍生公司,基于他的研究开发高功率、超快激光系统,应用于医学、消费电子、国防、材料加工、生物技术、汽车和其他关键技术市场。他是美国物理学会、美国科学促进会、IEEE、NAI、NSBP、OSA 和 SPIE 的院士。他还获得过 NSF PECASE 奖、APS Edward Bouchet 奖、佛罗里达科学院奖章获得者、Townsend Harris 奖章、IEEE 光子学会 William Streifer 科学成就奖和 APS Arthur L Schawlow 激光科学奖。最近,他当选为美国国家工程院 (NAE) 院士。他拥有超过 850 篇科学出版物、会议论文集和受邀演讲,以及 45 项美国专利。
Schneefernhaus高海拔研究站(2.7 km A.S.L.)的高功率差分吸收激光雷达系统山Zugspitze已成功启动了其操作。光源是一种opo种子的闪光灯泵式Ti:蓝宝石激光系统,目前在几乎转换有限的带有大约130 MHz的带中,在800 nm左右提供250 MJ。在817 nm处的激光雷达返回由0.65 m直径的牛顿望远镜收集,并在单独的近场和远场盆腔中用Ava-Lanche光电二极管检测到。测量已在相当不同的条件下进行。即使在干燥条件下和白天,垂直范围至少也证明了10公里。该系统通过与辐射仪的比较来验证,该辐射部分部分显示出5%以内的同意。达到约0.7 J的完整激光器能量并通过降低信号噪声的顺序,我们期望覆盖整个自由对流层的范围。
许多研究表明,脉冲激光器和聚焦X射线以类似于重离子的方式产生SEE的能力,同时提供了设备内电荷产生的精致空间和时间控制[9-11]。三种测试方法的电荷产生曲线在轴向和径向尺寸中有所不同。重离子通常在大多数设备尺寸的相关距离上沿轴向方向具有线性电荷产生曲线,其特征是线性能传递(LET)。典型的集中飞秒脉冲激光系统使用光学器件,可产生由高斯两光子吸收(TPA)描述的电荷产生曲线[5,12-15]。我们注意到,最近,美国已经开发了一种光学配置。海军研究实验室(NRL),该实验室使用准贝斯梁来产生扩展的电荷产生曲线[16],这在这项工作中未评估。使用聚焦的皮秒脉冲X射线的新兴技术产生了由Beer定律描述的电荷产生曲线,并随着穿透深度而呈指数降低[17]。这些