摘要本论文的主要目标是显示从两个不同类型的传感器组合数据集的强度。本文中使用的传感器是高光谱摄像头和扫描3-D激光器。高光谱摄像机用于检测和激光识别/可视化。该项目可以分为两个主要部分。第一部分讨论了其中一个数据集的属性,以及如何使用这些属性来隔离异常。在这里要处理的问题不仅是要查看哪些属性,而且是如何使过程自动化。然后使用从第一个数据集中保留的信息在第二个数据集中做出智能选择。再次,挑战之一是使此过程自动和准确。项目的第二部分包括以向用户提供最多信息的方式呈现结果。这是通过图形用户界面完成的,该界面允许用户操纵显示结果的方式。
的夹角 ; R 为激光雷达与目标物体的距离 ; T t 、 T r 、 T a 分别为发射 、 接收 、 传输系统的效率 。 前端光学系统
概述 Trimble ® AX60 是一款高性能、多功能、完全集成的机载激光雷达解决方案,旨在满足大多数航空测量要求。它使用脉冲重复率 (PRR) 为 400 kHz 的强大激光系统,以高分辨率捕获非常密集的点云。该解决方案还采用了同步多脉冲处理、回波数字化和波形分析等先进技术。凭借其 Trimble 飞行规划和传感器管理软件以及 Trimble Inpho 处理软件,AX60 被设计为端到端解决方案,可提供无与伦比的性能、操作灵活性和效率以及服务可靠性。同时,它为航空测量公司提供了较低的拥有成本,而 Trimble 的全球组织则提供长期的生命周期支持。
Lidar 与 radar 一样,实际上是一个首字母缩略词。radar 代表“无线电探测和测距”,lidar 代表“光探测和测距”,它描述了一种使用激光确定三维 (3D) 数据点的方法。它是一种遥感技术,使用地面(地面激光扫描;TLS)或机载(机载激光扫描;ALS)系统;它可以在静态或移动平台上使用,包括飞机和车载传感器。它也被称为机载激光测绘 (ALSM),在某些军事环境中,它被称为激光探测和测距 (LaDAR)。从最广泛的意义上讲,lidar 指的技术范围比本指南中涉及的要广泛得多;因此,本指南侧重于航空系统的应用,并通篇使用 lidar 这一术语。
沃尔沃汽车和高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,让驾驶员和汽车传感器都感觉非常真实,以用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合现实或虚拟现实。它使用高清摄像头并实现混合现实。这使得设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在汽车问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构中戴着耳机驾驶真正的汽车,通过增强现实技术在现实环境中测试虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
摘要 —irborneirborneLiDAR(光检测和测距)数据广泛应用于建筑物重建,研究报告称在典型建筑物中取得了成功。然而,弯曲建筑物的重建仍然是一个悬而未决的研究问题。为此,我们提出了一种通过组装和变形几何图元进行弯曲建筑物重建的新框架。输入的 LiDAR 点云首先转换为轮廓,其中识别出各个建筑物。从建筑物轮廓中识别出几何单元(图元)后,我们通过将基本几何图元与这些图元匹配来获得初始模型。为了完善组装模型,我们使用扭曲场来细化模型。具体来说,通过对初始模型进行下采样来构建嵌入式变形(ED)图。然后,通过基于我们的目标函数调整 ED 图中节点参数,将点到模型的位移最小化。所提出的框架在不同城市的各种 LiDAR 收集的几个高度弯曲的建筑物上得到了验证。实验结果以及精度比较证明了我们方法的优势和有效性。新见解归因于一种有效的重建方式。此外,我们证明基于原始的框架将数据存储显着减少到传统网格模型的 10-20%。
– Fugro 在设计新的 Fugro LADS Mk 3 系统时坚持并运用了这些工程理念,这些理念将避免过时,根据客户要求提供增强功能,并延长 Fugro LADS Mk 3 系统以及 Fugro 团队设计的任何未来系统的使用寿命
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
摘要:环境保护的主要任务之一是监测海岸因气候变化和人为压力而产生的负面影响。遥感技术经常用于影响评估研究。地形和水深测量程序被视为单独的测量方法,而将沿海区域分析与水下影响相结合的方法很少用于岩土分析。本研究对用于沿海监测的水深测量机载系统进行了评估,同时考虑了环境条件并与其他监测方法进行了比较。测试是在波罗的海的一个区域进行的,尽管监测成功,但沿海退化仍在继续。该技术能够确定沿海悬崖侵蚀的威胁(基于岩土分析)。据报道,浅水深度对水深光探测和测距 (LiDAR) 来说是一个挑战,因为很难将表面、水柱和底部反射相互分离。通过描述所使用的分类方法克服了这一挑战,即最适合点云处理的 CANUPO 分类方法。本研究提出了一种识别自然灾害的创新方法,即结合沿海特征与水下因素的分析。本文的主要目标是评估在波罗的海使用水深扫描来确定导致海岸侵蚀的因素的适用性。此外,还进行了岩土工程分析,考虑到水下的几何地面变化。这是第一项使用沿海监测方法的研究,将岩土工程计算与遥感数据相结合。这项跨学科的科学研究可以提高对环境过程的认识。
1.连续操作范围 PulseTRAK™ 技术通过消除其他配备多脉冲的传感器中常见的数据覆盖间隙和不规则点密度,实现了真正的连续操作范围。此功能大大简化了任务规划,并在整个数据集中产生一致的数据分布,甚至跨越接收器“盲区”。» 实现一致的点密度,不再有接收器“盲区”。» 无论地形如何变化,完全自由收集可显著提高效率。» 大大简化了任务规划。2.动态视场 (FOV) Galaxy 采用 SwathTRAK™ 技术,是唯一一款采用实时动态 FOV 的传感器,即使在不同的地形高度下也能保持固定宽度的扫描带。» 尽管地形高度发生变化,仍能保持规则的点分布并提高点密度一致性。» 与固定 FOV 传感器相比,航线数量更少,可实现最大收集效率。» 与固定 FOV 传感器设计相比,收集成本可节省 40-70%,具体取决于地形变化。