图2:介电函数的假想部分ε2(ω),作为散装(a)si和(b)lif的光子能量(eV)的函数。在这里,实验光谱显示为蓝色杂交,红线代表了使用GGA函数代替手稿中使用的LDA函数的KSP计算结果。可以看出,与实验保留的极好的一致性,实际上,与使用LDA功能进行的相同计算相比,理论吸收仅可忽略不计(与图。纸的2)
从那以后,我们取得了巨大的成功。我们可以在Ofsted报告,绩效数据,财务电子表格以及我们的招聘和保留数字中量化我们的成功。但是,最重要的是,我们只能因为我们的文化和精神而取得如此成功。是我们更具定性的成功使IFTL真正独特。我们是一个坚强的家庭,具有不同的个性和不同的能力,但是我们拥有将我们团结在一起的黄金线 - 相信我们在一起更强大。当事情不按照我们想要的方式进行时,我们将互相努力并互相支持。友情是首屈一指的,因为我们的学校改进系统已强烈地嵌入我们的学校,我们使用技能和专业知识来互相支持。自我维持的学校改进系统并没有什么新鲜事物 - 但是我们这样做的方式对我们而言是独一无二的,而我们感到非常自豪。当然,这是我们1000多个同事的热情和承诺的结果。作为首席人物官员,您将通过制定人民愿景和战略来建立和建模积极影响,从而支持我们所有同事,从而确保IFTL是我们行业和当地社区中选择的雇主 - 鼓舞人心的未来!
• TAIGA 与明尼苏达州管理和预算局 (MMB) 领导层合作,测试了一项名为检索增强生成 (RAG) 的 AI 技术。RAG 技术使用户能够使用自然语言与大量复杂文档进行交互。MMB 的 RAG 实施创建了一个熟悉全州财务政策的聊天机器人。通过在 MMB 文档和网站内容上训练聊天机器人,工作人员可以使用自然语言轻松浏览数百页的财务政策和程序。这减少了经验丰富的工作人员回答问题所花的时间,使他们能够专注于更复杂的 MMB 工作量。
在过去几年中,使用腔量子量子电动力学效应,即真空电磁场来修饰腔中的材料特性。但是,仍然存在稀缺的一般结果,这些结果为直观的理解和局限性提供了可以实现哪种效果的指南。我们为低能量物质激发之间的有效相互作用提供了这样的结果,或者通过它们相互耦合与腔电磁(EM)线场或通过耦合与夫妇与EMFIELD的介体模式相互耦合或间接相互作用。我们证明了诱导的相互作用本质上是纯粹的静电,因此由零频率评估的EM Green函数完全描述。我们的发现表明,使用一个或几个空腔模式减少模型可以轻松产生误导性结果。
摘要:甲基铵铅三纤维胺钙钛矿(Mapbbr 3)是重要的材料,例如,用于发光应用和串联太阳能电池。相关的光物理特性受激发态以激发态的复杂且相对较少理解的相互作用和自由电荷载体的相互作用而产生的许多现象。在这项研究中,我们在可见光和Terahertz范围内结合了瞬态光谱镜,以在各种光子能量和密度下激发时在超快时在超消极时段研究激发子和自由载体的存在。对于上述和谐振带隙激发,我们发现自由电荷和激发子共存,并且两者主要是在我们的50 - 100 fs实验时间分辨率中迅速生成的。然而,随着对谐振带隙激发的调子能量降低,激子与无电荷比增加。自由电荷签名主导了瞬时启动激发和低激发密度的瞬时吸收响应,从而掩盖了激发型特征。具有谐振带隙激发和低激发密度,我们发现尽管激发子密度增加,但仍保留自由电荷。我们表明,激子将其定位到浅陷阱和/或Urbach尾部状态中形成局部激子(在Picseconds的数十个内部),后来被逐渐降低。使用高激发密度,我们证明了多体相互作用变得明显,诸如苔藓 - 爆发的偏移,带隙重新归一化,兴奋能源排斥和Mahan激子的形成之类的作用显而易见。■简介在超快时间尺度上,我们在此处证明的激发型Mapbbr 3的激子和自由电荷的共存证实了材料对发光二极管和串联太阳能电池应用的高潜力。
偏见的双层石墨烯(BBG)是基于石墨烯 - 基于石墨烯的系统中兴奋性效应的重要系统,其易于调谐带隙。此带隙受外部门电压的控制,使一个人可以调整系统的光学响应。在本文中,我们研究了Bernal堆叠的BBG的激子线性和非线性光学响应,这是栅极电压的函数,包括平面(IP)和平面(OOP)方向。基于BBG电子结构的半分析模型,描述了栅极电压对激子结合能的影响,我们将讨论重点放在IP和OOP示例性响应上。线性和第二个谐波产生(SHG)非线性响应都对栅极电压非常敏感,因为带相互动量矩阵元素和系统的带隙都会随偏置潜力而变化。
通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。
利用相干电磁辐射对基本量子系统进行共振激发是许多物理学实验的核心,例如原子和分子光谱、原子钟、量子信息处理等。相干激光激发有许多应用,特别是需要高精度控制量子叠加态的频率或相位时,但迄今为止它在核物理中几乎没有使用[1]。从典型的核激发能量和可用的激光光子能量之间的巨大不匹配可以理解激光激发原子核的困难。核激发已经在激光产生的等离子体中得到证实,其中相互作用是通过在强激光场中加速的电子介导的,电子在碰撞中或通过X射线范围内的轫致辐射与原子核相互作用[2]。不同的原子核已经通过同步辐射在6 – 60 keV能量范围内的跃迁上进行共振激发,寿命在纳秒到微秒范围内[3]。 Sc-45 的 12.4 keV 共振最近在欧洲 x 射线自由电子激光器 [4] 上被激发,其寿命为 0.47 秒。Th-229 原子核以其独特的低能同质异能态而闻名 [5 – 7] 。其激发能量为 8.4 eV,使核跃迁处于真空紫外 (VUV) 光谱范围内,使其可用于台式激光系统和精密光学工具的实验
一些研究小组曾尝试将钍原子核单独固定在电磁阱中,以研究它们。然而,托尔斯滕·舒姆和他的团队选择了一种完全不同的技术。“我们开发出了一种包含大量钍原子的晶体,”在维也纳开发了这些晶体并与 PTB 团队一起测量它们的 Fabian Schaden 解释说。“虽然这在技术上相当复杂,但它的优势在于,我们不仅可以用这种方式研究单个钍原子核,还可以用激光同时击中大约 10 的 17 次方个钍原子核——比我们银河系中的恒星数量多一百万倍。”大量的钍原子核放大了这种效应,缩短了所需的测量时间,并增加了实际发现能量跃迁的概率。