另一方面,日本政府将“零排放火力发电”战略定位为“零排放火力发电”,包括火力发电与CCS(以下简称“CCS火力发电”)、氨与煤电混烧、氢能发电等,强调发展零排放火力发电是“脱碳的王牌”。日本政府在《战略能源计划》审议过程中提出了2050年火力发电约30%、氨和氢能发电约10%的未来设想。CCS火力发电厂号称能够捕获并减少90%的二氧化碳排放,但实际捕获率一直被限制在60%至70%之间。《战略能源计划》规定,在煤电厂中占20%的氨基火力发电仍会排放出约两倍于天然气的二氧化碳。引入CCS和氨基火力发电,将有可能让运营商有理由延长燃煤电厂的寿命。
虽然其他火力发电厂(如煤炭和核电厂)通常在现场储存燃料,但大多数天然气发电机通过管道实时接收燃料。此外,天然气发电厂通常实时投入使用或增加或减少发电量以应对负荷波动、其他具有可变输出的发电资源(如风能和太阳能)或网络中断事件。因此,天然气发电厂从管道网络中提取的天然气量可能会在几天甚至几小时内发生很大变化。从历史上看,天然气网络运营商能够通过将多余的天然气储存在储存设施或管道内来支持这种变化;这种储存被称为管道包。通过在天然气发电机处储存额外的天然气以供可变操作,天然气网络本质上充当了电力系统的隐藏灵活性来源。天然气网络可以提供的灵活性取决于网络的配置,包括任何天然气储存的位置、管道的长度和直径、发电机额定值以及其他用户对天然气的需求。
水力发电量从 337.52 兆瓦时增加到 387 兆瓦时,其在能源结构中的份额从去年的 39.5% 提高到今年的 44.4%。另一方面,火力发电厂的发电量从 158.66 兆瓦时减少到 135.9 兆瓦时,其在能源结构中的份额从 18.6% 减少到 15.6%。甲烷气体、太阳能和进口的贡献变化不大,其中甲烷气体产生的能源从 213.14 兆瓦时(25%)增加到 213.6 兆瓦时(24.5%),太阳能从 18.06 兆瓦时(2.1%)增加到 17.7 兆瓦时(2%),进口从 30.2 兆瓦时(3.5%)增加到 31.95 兆瓦时(3.7%)。另一方面,泥炭发电和区域共享发电厂产生的能源存在明显差异,泥炭发电从 30.99MWh(3.6%)下降到 19.0MWh(2.2%),而区域共享发电厂产生的能源从 63.88MWh(7.5%)增加到 69.2MWh(7.9%)。下图说明了能源结构的变化。
电转甲烷代表了将电能转化为化学能的一种创新方法。这种技术只有在将经济高效的电能来源与纯 CO 2 流相结合时才能真正成功。从这个角度来看,本文通过数值研究了一种创新工艺布局,该布局集成了用于燃烧固体燃料的流化床化学循环系统和基于可再生能源的电转甲烷系统。通过考虑一种煤和三种含水量不同的污水污泥作为燃料、以氧化锆为载体的 CuO 作为氧载体、通过水电解生产氢气以及以氧化铝为载体的 Ni 作为甲烷化催化剂来评估工艺性能。通过考虑部分产生的 CH 4 最终可以燃烧以干燥高水分含量的燃料来评估该工艺的自热可行性。最后,通过考虑仅使用来自可再生能源的电能,评估了所提出的工艺用作储能系统的能力。关键词:火力发电厂、化学循环燃烧、
有大量的能源存储选项可供选择 [2]。其中最先进的一种是 CES(低温能源存储),它在英国有一个正在运行的试验工厂。CES 涉及使用多余的电力来运行空气液化设备,将环境空气液化并将其储存在绝缘罐中。当需要能源时,这些空气被释放、蒸发、膨胀并通过涡轮机械发电。仅此一项,往返效率就可能达到约 50% [6]。这一事实凸显了新型能源存储系统常见的一个关键问题;往返效率通常太低,以至于这些系统无法在电力便宜(过剩)时购买电力并在电力昂贵(有需求)时出售,从而实现经济可行性。该系统电力排放侧的低温为火力发电厂提供了额外的机会;CES 能够从这些工厂中提取原本被视为废物的低品位热量,从而提高有效的往返效率。
概述:提高火力发电厂的效率已变得非常重要,以减少二氧化碳 (CO 2 ) 排放,从而最大限度地减少全球变暖效应。认识到这些情况,北海道电力公司 (HEPCO) 新建了 700 兆瓦的豊藤厚真发电站4 号机组是一座采用日本最高蒸汽压力和温度条件 25 MPa-600°C/600°C 的燃煤发电厂,于 2002 年 6 月竣工。日立公司设计并建造了发电厂的主要设备涡轮发电机。通过开发能够适应高温高压蒸汽条件的高性能蒸汽轮机、采用新开发的冷凝管布置以平衡蒸汽流入并优化冷凝效率的冷凝器以及其他尖端技术,该设计实现了出色的效率和高可靠性。通过使用基于 CRT(阴极射线管)的操作系统进行集中操作和监督,并在 100 英寸大屏幕上共享运行数据,发电厂的运行和操作也得到了显着改善。这使得少数人员可以从中央控制室操作该工厂。
长时储能 (LDES) 技术可长时间 (> 8 小时) 储存能量,然后通过再转换或作为不同载体在延迟时间使用。LDES 可为可再生能源提供曲线平滑和限电避免。LDES 解决方案包括:• 电化学 (电能到电能):例如液流电池、金属空气。• 机械 (电能到电能):抽水蓄能或其他不太传统的技术,如压缩空气或液态空气。• 热能 (电能到热能):储能,例如熔盐或储能砖。• 化学 (电能到 x):在将氢或氨用作燃料或化学原料之前进行储存。目前,抽水蓄能是最成熟的 LDES 技术,但由于靠近水和海拔等地理需求而面临限制。因此需要其他 LDES 解决方案。具体而言,热能 LDES 解决方案具有安装技术简单的优势。热能 LDES 还可以取代区域供热中的化石火力发电厂,并且在短期内与化石热源相比具有成本竞争力,特别是在可再生能源成本较低或可再生能源受限的地区。
资料来源:世界银行,2020 年 1 1986 年革新开放前,越南人均用电量仅为 70 千瓦时。如今,这一数字已超过 2,000 千瓦时(见上图 1),尽管人均用电量仍远低于该地区许多其他国家,例如马来西亚、泰国和中国的人均用电量分别为 4,600 千瓦时、2,500 千瓦时和 3,900 千瓦时。 2 然而,考虑到其中低收入水平,越南经济实际上是世界上能源密集度最高的国家之一。按照目前的增长速度,到 2030 年,越南的人均用电量将达到 5,000 千瓦时以上。3 政府估计,到 2030 年,越南将需要约 1,300 亿美元的新投资资本,平均每年约 120 亿美元,其中约 90 亿美元需要投资于电力生产资产,30 亿美元需要投资于输电网。4 直到最近,国内能源资源(主要是水电和煤炭)已基本满足了社会经济发展日益增长的需求。然而,廉价能源正变得越来越稀缺。此外,政府支持的燃煤火力发电厂建设项目因融资和监管问题而严重推迟。
目前,工业中大部分最终能源消耗都由化石燃料满足,能源由火力发电厂 (TPP) 产生。然而,TPP 的整体能源效率很低,甚至不到 40%。因此,21 世纪的特点是自然资源枯竭和短缺的问题,尤其是有机化石燃料。向可再生能源的过渡目前是一个全球性问题。可再生能源可以帮助俄罗斯联邦减缓气候变化,增强对价格波动的抵御能力,降低能源成本。“2035 年前俄罗斯能源战略”的方向之一是使用新型燃料,包括与工艺过程中产生的废物的混合物。使用以前储存在垃圾填埋场和污泥库设施中的工业废物可显著减少煤炭、原油和天然气的使用以及温室气体排放。工业固体废物回收是一个有前途的方向。废物转化为能源 (WtE) 技术有助于将工业废物转化为有用能源,并最大限度地减少与之相关的问题。在这些技术中,废物是一种二次能源和材料资源。在化石燃料枯竭及其消费量不断增加的背景下,开发基于替代可再生燃料的废物转化能源技术是一项重要任务。
关于 JSW 能源:JSW 能源有限公司是印度领先的私营电力生产商之一,也是市值 230 亿美元的 JSW 集团的一部分,该集团在钢铁、能源、基础设施、水泥、体育等领域占有重要地位。JSW 能源有限公司已在电力行业的价值链中占据一席之地,在发电和输电领域拥有多元化资产。凭借强大的运营、健全的公司治理和审慎的资本配置策略,JSW 能源继续实现可持续增长,为所有利益相关者创造价值。JSW 能源于 2000 年开始商业运营,在卡纳塔克邦 Vijayanagar 投产了首批 2x130 兆瓦火力发电厂。从那时起,该公司的发电能力稳步提高,从 260 兆瓦增加到 7,189 兆瓦,拥有火力发电 3,508 兆瓦、风力发电 1,615 兆瓦、水力发电 1,391 兆瓦和太阳能 675 兆瓦的投资组合,确保了地域分布、燃料来源和电力采购安排的多样性。该公司目前正在建设总计 2.6 吉瓦的多个电力项目,目标是到 2030 年实现总发电能力达到 20 吉瓦。