理论研究了在纯失相和耗散环境下利用量子点接触(QPC)测量双量子点(DQD)系统的几何相位。结果表明,在这两种环境下,准周期内量子点间的耦合强度对准周期内几何相位的影响增强,这是由于连接两个量子点的隧穿通道宽度的扩大,加速了量子点间电子的振荡,使其演化路径变长。另外,由于系统与QPC间较强的耦合将电子冻结在一个量子点内,演化路径所包围的立体角近似为零,因此几何相位存在一个明显的近零区域,这与量子芝诺效应有关。对于纯失相环境,随着失相率的增加,几何相位被抑制,这仅是由系统的相位阻尼引起的。在耗散环境下,几何相位随着弛豫速率的增大而减小,这是由于体系的能量耗散和相位衰减共同作用的结果,该结果对在量子信息中利用几何相位构建基于量子点体系的容错量子器件具有指导意义。
在 1952 年 2 月的联合计算机会议上,我发表了一篇关于晶体管作为数字计算机组件的论文。我当时的演讲基于一些早期的晶体管经验,这些经验促成了 TRADIC 计划。本文将介绍这些早期经验的进展情况。1951 年,我们有了一个高速点接触晶体管。2 我们还有一个使用该晶体管的放大器,它可以以 1 mc 的脉冲速率再生数字数据。应空军的要求,*启动了一个程序,以开发用于机载应用的晶体管数字计算机。该应用的最佳特征可能是,它需要定期对少于 20 个输入数字执行一系列广泛的计算。机器所需的输出数量甚至比输入数量还要少。计算机将成为军用机器的一部分;也就是说,它的输入不是来自电动打字机或穿孔带的数字,而是来自轴和特殊刻度盘。它的输出同样不是打印的纸张,而是轴位置和向其他机器发出的操作信号。因此,我们面临的大量问题都与
简介 尽管 20 世纪 40 年代的许多计算机都是作为军事项目开发的,但是真空管的使用使得它们过于庞大且不可靠,无法纳入实际的武器系统。 Eckert-Mauchly 计算机公司于 1949 年为 Northrop Aircraft 制造了 BINAC,但没人真正指望它会被装进飞机。 IBM 在 20 世纪 50 年代为北美防空系统制造的大型 SAGE(半自动地面环境)系统用于指挥和控制,而不是用于导弹制导。 当真空管被晶体管取代时,人们有可能拥有体积更小、可靠性更高的计算机。 晶体管于 1948 年在贝尔实验室发明,但经过数年的发展才适合用于计算机。 贝尔实验室于 1954 年为空军制造了第一台晶体管计算机 TRADIC(晶体管数字计算机)。 它使用了 700 个点接触晶体管和 10,000 个锗二极管。 (二极管是一种电子设备,它允许电流只朝一个方向流动。)斯佩里兰德的两个主要计算机开发小组(圣保罗和费城)都参与了早期的晶体管计算机项目。费城参与了原子能委员会的 LARC 超级计算机项目,该项目耗时长且成本高昂。圣保罗在早期为海军工作的基础上,积极参与军事项目。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
图 2 | 通过电化学抛光稳定的量子电导能级。a. 忆阻单元中的 SET 过程示意图,该过程是一种电化学驱动过程,且尖端形成的电场进一步加速了这一过程。细丝生长过程中的恶劣条件通常会导致量子电导能级的高度不可预测性和多变性。b. RESET 过程中的电化学抛光效应能够通过首先去除/溶解接触配置中的不稳定原子而保留更稳定的原子来获得更可靠的量子电导能级。在此框架中,系统通过离散的电导能级从低阻态 (LRS) 演变为中间亚稳态电阻态 (MRS) 再演变为量子点接触 (QPC)。在 RESET 过程中,不稳定的原子将从细丝中去除,留下最稳定的原子形成稳定的 QPC。c.循环示例:通过 100 mV/s 的电压扫描速率获得突然 SET,通过慢速电压扫描(1.2 mV/s)通过电化学抛光获得逐渐 RESET。d. 通过电化学抛光获得的 RESET 过程显示稳定的量子电导平台,为 𝐺 0 的倍数。插图显示了扫描施加电压时量子电导平台随时间的稳定性。
摘要:我们提出了一个简单的过程,使用PEDOT使用PEDOT:PSS(Poly(3,4-Eth Ylenedioxythiophene):Poly(styrenenesulfonate))/非氧化的石墨烯以涂上聚酰胺或聚氨酯针织织物,以便于智能医疗保健。电导性纺织品。随后,根据PEDOT的比率:PSS/非氧化的石墨烯复合材料(1.3 wt%:1.0 wt%:1.3 wt%; 1.3 wt%:0.6 wt%:0.6 wt%; 1.3 wt%; 1.3 wt%; 1.3 wt%:0.3 wt%:0.3 wt%)和应用程序数量(一次,或跨度)(又一次)。通过Fe-Sem观察到标本的表面形态。此外,使用FTIR和拉曼光谱法对其化学结构进行了表征。通过四点接触进行的样品的电特性测量(板电阻)显示了对非氧化石墨烯的电导率增加以及复合系统中的应用数量。此外,对织物的机械性能的测试表明,PEDOT:PSS/非氧化石墨烯处理的织物表现出比未经处理的样品的伸长率更低,恢复原始长度的能力更低。此外,通过执行拉伸操作1,000次,拉伸强度为20%,测试了PEDOT:PSS/非氧化石墨烯聚酰胺/聚氨酯针织织物;因此,传感器保持恒定电阻而没有明显的损坏。这表明PEDOT:PSS/非氧化的石墨烯应变传感器具有足够的耐用性和电导率,可以用作智能可穿戴设备。
摘要 CRISPR 相关 (Cas) 酶通过实现 RNA 引导的基因组编辑彻底改变了生物学。在供体模板存在下进行同源定向修复 (HDR) 目前是 CRISPR-Cas 诱导的双链 DNA 切割后引入精确编辑的最通用方法,但 HDR 效率通常低于导致插入和缺失 (indel) 的末端连接途径。我们测试了使用与 PRDM9 融合的 Cas9 构建体可以增加 HDR 的假设,PRDM9 是一种染色质重塑因子,可沉积组蛋白甲基化 H3K4me3 和 H3K36me3,经证实可介导人类细胞中的同源重组。我们的结果表明,融合蛋白特异性地在 DNA 中的 Cas9 切割位点接触染色质,使观察到的 HDR 效率加倍,并将 HDR:indel 比率提高 3 倍,与单独使用 Cas9 诱导的相比。HDR 增强发生在多种细胞系中,脱靶基因组编辑没有增加。这些发现强调了染色质结构对于 CRISPR-Cas 基因组编辑过程中 DNA 修复途径选择的重要性,并提供了一种提高 HDR 效率的新策略。意义声明 CRISPR-Cas 介导的同源定向修复 (HDR) 可为各种研究和临床应用提供精确的基因组编辑,但由于竞争性端接途径,HDR 效率通常较低。在这里,我们描述了一种通过设计 CRISPR-Cas9-甲基转移酶融合蛋白来影响 DNA 修复途径选择并提高 HDR 效率的简单策略。该策略强调了组蛋白修饰对 CRISPR-Cas 诱导的双链断裂后 DNA 修复的影响,并增加了 CRISPR 基因组编辑工具箱。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
静电能通常是量子纳米电子系统中最大的能量尺度。然而,在理论工作或数值模拟中,静电场也经常被视为外部势能,这可能会导致错误的物理图像。开发能够正确处理静电及其与量子力学相互作用的数值工具对于理解半导体或石墨烯等材料中的量子器件至关重要。本论文致力于自洽量子静电问题。这个问题(也称为泊松-薛定谔)在状态密度随能量快速变化的情况下非常困难。在低温下,这些波动使问题高度非线性,从而使迭代方案非常不稳定。在本论文中,我们提出了一种稳定的算法,可以以可控的精度为该问题提供解决方案。该技术本质上是收敛的,包括在高度非线性的范围内。因此,它为量子纳米电子器件的传输特性的预测建模提供了可行的途径。我们通过计算量子点接触几何的微分电导来说明我们的方法。我们还重新讨论了整数量子霍尔区域中可压缩和不可压缩条纹的问题。我们的计算表明,在中等磁场中存在一种新的“混合”相,它将低场相与高场条纹分开。在第二部分中,我们构建了一个理论来描述可以在二维电子气体中激发的集体激发(等离子体)的传播。我们的理论在一维上简化为 Luttinger 液体,可以直接与微观量子静电问题联系起来,使我们能够做出不受任何自由参数影响的预测。我们讨论了最近在格勒诺布尔进行的实验,旨在展示电子飞行量子比特。我们发现我们的理论与实验数据在数量上一致。