Loading...
机构名称:
¥ 14.0

静电能通常是量子纳米电子系统中最大的能量尺度。然而,在理论工作或数值模拟中,静电场也经常被视为外部势能,这可能会导致错误的物理图像。开发能够正确处理静电及其与量子力学相互作用的数值工具对于理解半导体或石墨烯等材料中的量子器件至关重要。本论文致力于自洽量子静电问题。这个问题(也称为泊松-薛定谔)在状态密度随能量快速变化的情况下非常困难。在低温下,这些波动使问题高度非线性,从而使迭代方案非常不稳定。在本论文中,我们提出了一种稳定的算法,可以以可控的精度为该问题提供解决方案。该技术本质上是收敛的,包括在高度非线性的范围内。因此,它为量子纳米电子器件的传输特性的预测建模提供了可行的途径。我们通过计算量子点接触几何的微分电导来说明我们的方法。我们还重新讨论了整数量子霍尔区域中可压缩和不可压缩条纹的问题。我们的计算表明,在中等磁场中存在一种新的“混合”相,它将低场相与高场条纹分开。在第二部分中,我们构建了一个理论来描述可以在二维电子气体中激发的集体激发(等离子体)的传播。我们的理论在一维上简化为 Luttinger 液体,可以直接与微观量子静电问题联系起来,使我们能够做出不受任何自由参数影响的预测。我们讨论了最近在格勒诺布尔进行的实验,旨在展示电子飞行量子比特。我们发现我们的理论与实验数据在数量上一致。

自洽量子静电学

自洽量子静电学PDF文件第1页

自洽量子静电学PDF文件第2页

自洽量子静电学PDF文件第3页

自洽量子静电学PDF文件第4页

自洽量子静电学PDF文件第5页

相关文件推荐

2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥3.0
2020 年
¥8.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥6.0
2021 年
¥1.0
2023 年
¥3.0
2023 年
¥1.0
2025 年
¥1.0
2020 年
¥7.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0