然而,氮化物点的发射线通常不均匀地加宽,与其寿命极限相比至少加宽 100 倍,10,11 这最终限制了它们的不可区分性。加宽是由光谱扩散引起的,光谱扩散是由点附近的电荷载流子的捕获和释放产生的,从而产生了变化的局部电场。通过量子限制斯塔克效应 (QCSE),这导致点的发射能量发生变化。这种效应对氮化物 QDs 比对砷化物 QDs 更强,因为首先氮化物材料的强极性导致氮化物 QDs 中的激子具有较大的永久偶极子,从而增加了与静电环境的耦合并放大了光谱扩散的强度。 12 其次,与砷化物点相比,氮化物点的生长方法改进时间较短,而且它们还表现出更高的点缺陷和位错密度,这些缺陷和位错密度可以充当载流子的陷阱。13–15 光谱扩散是氮化物点产生高度不可区分的光子的最大障碍,因为
教学大纲: 热力学:第一定律、第二定律、熵、热机、循环过程、熵平衡标准、第一定律与第二定律的结合;麦克斯韦关系、吉布斯-亥姆霍兹方程、热膨胀系数和压缩系数;第三定律:赫斯定律、基尔霍夫定律;相平衡:克劳修斯-克拉珀龙方程、固液/气相-凝聚相平衡、逸度;溶液热力学:拉乌尔定律、亨利定律、吉布斯-杜恒方程、构型熵、常规溶液、过剩函数、点缺陷热力学;自由能:相图评估、吉布斯相律、杠杆法则;冶金反应热力学:埃林汉姆图、优势区图;动力学:动力学定律、反应速率理论、晶粒生长动力学、沉淀物成核和生长动力学、扩散控制生长的概念和建模。
色心是晶体中的点缺陷,可为分布式量子信息处理应用提供通向长寿命自旋态的光学接口。色心量子技术面临的一个突出挑战是将光学相干发射器集成到可扩展的薄膜光子学中,这是在商业代工工艺内进行色心大规模光子学集成的先决条件。本文,我们报告了将近变换限制的硅空位 (V Si ) 缺陷集成到在 CMOS 兼容的 4 H -绝缘体上碳化硅平台中制造的微盘谐振器中。我们展示了高达 0.8 的单发射器协同性以及来自耦合到同一腔模的一对色心的光学超辐射。我们研究了多模干涉对该多发射器腔量子电动力学系统的光子散射动力学的影响。这些结果对于碳化硅量子网络的发展至关重要,并通过将光学相干自旋缺陷与晶圆可扩展的、最先进的光子学相结合,弥合了经典量子光子学之间的差距。
波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
图 5:(ad) 先进的扫描探针,可在空间、能量和时间上实现终极分辨率。(a) 尖端功能化(例如 CO)可提高横向分辨率。(b) STM 发光可研究原子尺度上的光与物质相互作用。(c) 带有自旋极化尖端的 ESR-STM,可探测具有 μeV 能量分辨率的自旋流形。(d) 泵浦探测 THz-STM,可探测激发光谱的时间动态。(ei) 点缺陷(蓝色球体)横向位置控制的可能概念。(e,f) 合成自组织,例如沿域边界 (e) 或使用明确定义的纳米片 (f)。(g) 使用电子(左)或离子束(右)进行原子操控。(h) 通过扫描探针尖端进行原子操控,移动表面原子/分子并将其固定/植入宿主基质中。 (i)尖端诱导的化学处理的二维材料的解吸,暴露悬空键(红色)作为掺杂剂的锚点。
图2。在QFEG上重新掺杂的MOS 2中的8%重掺杂的MOS 2中的rhenium簇和条纹形成:多层重掺杂MOS 2岛的恒定电流STM概述图像。红色和橙色虚线分别表示岛边缘和隔离边界。(b)MOS 2岛的结构模型以快速(稀释浓度)和缓慢(密集的浓度)生长方面表示。(c,d)(a)中插图中显示的岛单层不同区域中的恒定电流STM地形。从浓度和分布的突然变化中鉴定出隔离边界。e)中性(REMO 0)的STM地形和单层Re-MOS 2中的带正电(REMO +)RE原子。(f)STM地形突出了中性(蓝色圆圈)和带正电荷(洋红色圆圈)的分布,以及单层Re-Mos 2膜中的硫位于硫磺位点缺陷(橙色圆圈)。
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
提高 ITC 的传统策略是 (i) 用热界面材料填充两个接触表面之间的间隙,23 (ii) 提高界面的耦合强度,或 (iii) 增加共价键的密度。24 据报道,使用键合有机纳米分子单层可以使铜和二氧化硅之间的 ITC 增加四倍,这可以提供与金属和电介质材料的强键合相互作用。25 据报道,在金和无定形聚乙烯系统中,通过分子桥也可以类似地增加 ITC。26 然而,即使对于通过强共价键连接的两个理想的光滑界面,由于两种不同材料之间的晶格常数和固有声子性质差异很大,界面热阻仍然存在。27,28 人们已经付出了很多努力来提高具有强共价键的界面的 ITC。例如,Tian 等人。发现原子混合引起的界面粗糙度可以提高声子传输系数和 ITC。29 此外,虽然点缺陷降低了纳米材料的热导率,但它
硅在半导体技术中的蓬勃发展与控制其晶格缺陷密度的能力密切相关 [1]。在 20 世纪上半叶,点缺陷被视为对晶体质量的危害 [2],如今它已成为调节这种半导体电学性质的重要工具,从而推动了硅工业的蓬勃发展 [1]。进入 21 世纪,硅制造和注入工艺的进步引发了根本性变革,使人们能够在单个层面上控制这些缺陷 [3]。这种范式转变将硅带入了量子时代,如今单个掺杂剂被用作可靠的量子比特来编码和处理量子信息 [4]。这些单个量子比特可以通过全电方式有效控制和检测 [4],但其缺点是要么与光耦合较弱 [5],要么发射中红外波段的辐射 [6],不适合光纤传播。为了分离具有光学接口的物质量子比特,从而实现量子信息的长距离交换,同时又能从先进的硅集成光子学中获益 [7],一种策略是研究在近红外电信波段具有光学活性的硅缺陷 [8, 9]。
GESE最近由于其具有吸引力的光学和电性能以及地球丰富性和低毒性而成为光伏吸收材料。然而,与冲击式 - 赛车限制相比,GESE薄膜太阳能电池(TFSC)的效率仍然很低。点缺陷被认为在GESE薄膜的电和光学特性中起重要作用。在这里,我们执行第一个原理计算以研究GESE的缺陷特征。我们的结果表明,无论在GE丰富或富含SE的条件下,费米水平始终位于价带边缘附近,导致未掺杂样品的P型电导率。在富含SE的条件下,GE空缺(V GE)具有最低的地层能,在价带边缘上方0.22 eV处,(0/2)电荷态过渡水平。高密度(高于10 17 cm-3)和V ge的浅层暗示它是GESE的p型起源。在富含SE的生长条件下,SE I在中性状态下具有低层的能量,但没有引入带隙中的任何缺陷水平,这表明它既不有助于电导率,也不导致非辐射重组。此外,GE I引入了深层电荷状态过渡水平,使其成为可能的重组中心。因此,我们建议应采用富有SE的条件来制造高耐高率的GESE太阳能电池。