本文介绍了威廉姆森纳米流体和普通纳米流体在旋转锥体延伸表面上流动时非稳态动力学热分布增强的数值研究。回旋微生物的生物对流和磁场热辐射通量是这项研究的重要物理方面。沿 x 和 y 方向考虑速度滑移条件。通过相似函数将主要公式转换为常微分形式。通过使用 Matlab 代码对 Runge-Kutta 程序进行数值求解,解决了五个具有非线性项的耦合方程。浮力比和生物对流瑞利数的参数降低了 x 方向的速度。与粘度成正比的滑移参数降低了流速,从而导致温度升高。此外,温度随着磁场强度、辐射热传输、布朗运动和热泳动值的升高而升高。
位移铁电体中序参量的集体振幅模式称为铁素体,表示长程有序极化的振幅波动。在远低于相变温度 T c 的温度下,铁素体激发的能量在长波长极限内明显间隙。当接近 T c 时,该间隙急剧软化为最小值或无间隙值,从而对热性能产生重大贡献。在此背景下,我们通过结合位移铁电体的微观自洽相变理论来探索铁素体在热容量和热传输中的作用,而不是传统的将热性能仅归因于声学声子的方法。以铁电体 PbTiO 3 为例,我们表明,相变附近铁素体的软化对于准确捕捉热性能的实验温度和电场依赖性至关重要。
摘要 — 当前的半导体器件制造通常需要集成热预算较低的退火工艺步骤;其中,脉冲激光退火 (LA) 是一种可靠的选择。因此,使用 LA 专用技术计算机辅助设计 (TCAD) 模型正在成为开发这种特殊加热方法的支持。无论如何,已经在学术或商业软件包中实现的模型通常会考虑一些近似值,如果将它们应用于相当常见的纳米器件配置,可能会导致不准确的预测:即具有纳米宽元素的结构,其中也存在非晶态口袋。特别是,在这些情况下,可能会发生非扩散热传输和爆炸性结晶。在这里,我们介绍了 LA TCAD 模型的升级,允许模拟这些现象。我们将证明这些模型可以可靠地集成到当前的 TCAD 软件包中,并讨论某些特定情况下数值解特征的主要特征。
cs 101b应用AI CS 4000(技术选择)ECE 101A架构,操作系统和云ECE 4000(未批准ECE要求)CS 101C自主机器人CS 4000(技术选择)ME 101E ME 101E计算流体和热传输动力传输ME 782计算计算机101计算机101计算机CCSS 101 ICTICS 101 ICTICS 101 V DY1 V OCTICS COSS 101 c STED COCTS 101 V DY1 V OCTIC CSS 101 4000(技术选择)CS 101E计算机视觉CS 4000(技术选择)CS 101F设计开发部署CS 4000(技术选择)ECE 101B数字和嵌入式系统ECE 4000(未批准ECE要求)CS 101G 101G 101G分布式Systemp ECE 4000(未批准ECE要求)ENGR 101A + ENGR 101B
基于纤维素纳米晶体(CNC)和具有各向异性结构的多壁碳纳米管(MWCNT)的轻质和机械强大的杂化泡沫是通过方向性冰冰期来制备的。各向异性杂交CNC-MWCNT泡沫表现出高度各向异性的导热性和方向依赖性的电磁干扰(EMI)的屏蔽(EMI)屏蔽,最大的EMI屏蔽率(EMI-SE)为41-48 db,为8和12 GHZ之间的41-48 db和12 ghz之间的22 for hybrId foam for hybrid foam之间。EMISE由吸收(SE A)主导,这对于微波吸收器应用很重要。对低径向热导率的建模强调了声子散射在异质CNC-MWCNT接口处的重要性,而轴向导热率则由沿对齐的杆状粒子沿固体传导支配。轻巧的CNC-MWCNT泡沫组合的各向异性导热率和EMI屏蔽效率的效率是不寻常的,并且对于方向性热传输和EMI屏蔽非常有用。
使用通用模型的分子动力学(MD)模拟,我们研究了瓶刷聚合物(BBP)中的热传播。当线性(骨干)聚合物用不同的长度n s的侧链和移植密度ρG嫁接时,架构被称为BBP,它控制了骨干的弯曲。研究BBP中的κ-行为特别令人感兴趣,这是由于两种竞争力学:通过N S和ρG增加了主链效应,增加了热传输系数κ,而侧链的存在为热泄漏提供了其他途径。我们展示了这两个效果之间的微妙竞争如何控制κ。这些结果表明,从弱移植(ρg<1)到高度嫁接(ρg≥1)方案,κ非单向变化,而不是独立于n s。还讨论了BBP熔体中侧链质量的影响和热流。关键字:导热率,准1D材料,瓶装 - 刷子聚合物,分子染色模拟,散射。
研究 她的研究领域是材料物理学。这是一个高度跨学科的领域,需要从物理学、化学、材料科学和工程学的角度进行研究。她的研究目标是应用材料合成(通常在极端条件下)、成分调整和晶体生长(更好的晶体通常是一种新材料)的实验工具来解决先进功能材料中的前沿问题。她的努力致力于 (1) 开发具有有趣特性的新型量子材料(超导性、量子磁性、非平凡拓扑、热电和多铁性),(2) 研究物理特性:电荷、自旋和热传输、磁化、比热、微观(磁力显微镜、扫描隧道显微镜、透射电子显微镜)和光谱(角分辨光发射和中子散射)测量,以及 (3) 与理论家/计算科学家合作,以在原子层面上理解观察到的现象。她的研究成果已发表 255 多篇经过同行评审的期刊文章,被引用超过 11,000 次。
摘要:我们使用基于神经网络力场的平衡分子动力学模拟探索了含有缺陷的双层PTST的声子传输性能。缺陷证明在降低结构的热导率方面非常有效,并且花缺陷具有与双重空缺相当的效果特别强大。此外,由于在高温下结构不稳定性而导致的结构的电导率表现出异常的温度依赖性。,我们通过预测的状态声子密度来研究对缺陷围绕正常模式的失真,并找到包括局部模式和蓝移的多种现象。■引言二维(2D)晶体通常具有缺陷,可以通过各种方法在合成过程中意外或故意引入它们。1研究这些缺陷对2D材料中声子传输的影响不仅对于在现实条件2,3中理解热传输物理学至关重要,还要为诸如热电和光电设备等应用找到最佳候选系统,以及热晶体管。1,4
固溶体合金的声子散射是降低晶格热导率的一种已证实的机制。Klemens 分析模型既可以作为工程材料的预测工具,特别是在热电领域,也可以作为快速发展的复杂和缺陷材料热传输理论的基准。本评论/综述概述了用于预测由于合金散射引起的热导率降低的简单算法,以避免常见的误解,这些误解会导致对质量涨落散射的大幅高估。Klemens 空位散射模型预测的散射参数比通常假设的要大近 10 倍,但由于误差抵消,这种巨大的影响常常无法检测到。Klemens 描述可推广用于对具有缺陷的复合材料的从头算计算。解析近似与实验和理论的接近性揭示了从复杂性中出现的简单现象和降低热导率的未知机会。
1。B。J. Kim,T。Nasir和J.-Y. choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。 SOC 55 [3] 203–223(2018)。 2。 Y。 M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。J. Kim,T。Nasir和J.-Y.choi,“石墨烯在低温下为将来的设备应用直接生长”,J。Korean Ceram。SOC 55 [3] 203–223(2018)。2。Y。M. Song等。 ,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。 3。 S。 E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。 今天9 [6] 20–25(2006)。 4。 E。 POP,“纳米级设备中的能量耗散和运输”,Nano Res。 3 [3] 147–169(2010)。 5。 H。 F. Hamann等。 ,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。 6。 J。 Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。 热。 eng。 149 192–212(2019)。 7。 S。 v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。 9 [5] 1850–1855(2009)。 8。 C。 Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。 9。 W。 Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。M. Song等。,“具有节肢动物眼睛启发的设计的数码相机”,《自然》 497 [7447] 95-99(2013)。3。S。E. Thompson和S. Parthasarathy,“摩尔定律:Si Microelectronics的未来”,Mater。今天9 [6] 20–25(2006)。4。E。POP,“纳米级设备中的能量耗散和运输”,Nano Res。3 [3] 147–169(2010)。5。H。F. Hamann等。,“热点限制的微处理器:直接温度和功率分布测量”,IEEE J.固态电路42 [1] 56-65(2007)。6。J。Kim,J。Oh和H. Lee,“电动汽车电池热管理系统的审查”,Appl。热。eng。149 192–212(2019)。7。S。v Rotkin,V。Perebeinos,A。G. Petrov和P. Avouris,“碳纳米管电子中的热量耗散的基本机制”,Nano Lett。9 [5] 1850–1855(2009)。8。C。Faugeras,B。Faugeras,M。Orlita,M。Potemski,R。R。Nair和A. K. Geim,“ Corbino膜几何学中石墨烯的热导率”,ACS Nano 4 [4] 1889-1892(2010)(2010年)。9。W。Cai等。 ,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。Cai等。,“通过化学蒸气沉积生长的悬浮和支撑的单层石墨烯中的热传输”,Nano Lett。10 [5] 1645–1651(2010)。10。A。A. Balandin等。 ,“单层石墨烯的高热电导率”,Nano Lett。 8 [3] 902–907(2008)。 11。 C。 W. Chang等。 ,“同位素对硝酸硼纳米管的热导率的影响”,物理。 修订版A. Balandin等。,“单层石墨烯的高热电导率”,Nano Lett。8 [3] 902–907(2008)。11。C。W. Chang等。,“同位素对硝酸硼纳米管的热导率的影响”,物理。修订版