摘要:单原子催化剂具有有趣的催化活性,用于依靠表面反应(例如电化学能量储存,催化和气体传感器)的应用。但是,此类催化剂的常规合成方法需要在真空系统中延长高温退火,从而限制了它们的吞吐量并增加了其生产成本。在此,我们报告了超快的闪光热冲击(FTS)诱导的退火技术(温度> 2850°C,<10 ms的持续时间,渐变/冷却速率约为10 5 k/ s),该技术在环境空气环境中运行,以制备单个固化的N型N型N型石素。三聚氰胺被用作N兴奋剂来源,可提供热能良好的金属 - 氮键位,导致单个金属原子的均匀且高密度的原子分布。证明了FTS方法生产的单原子稳定的N掺杂石墨烯的实际实用性,我们展示了它们的化学气体感应能力和电催化活性。总体而言,空气室,超快和多功能(例如Co,Ni,Pt和Co-ni Dual Metal)FTS方法为高通量,大面积和无真空制造的单原子催化剂提供了一般途径。关键字:强烈的脉冲光,光热效应,环境空气过程,单原子,n掺杂S
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
无热冲击 快速升温/降温是燃烧器块故障的主要原因之一。真空成型陶瓷燃烧器块不会受到热冲击。注意:偶尔出现表面裂纹不会导致“贯穿”裂纹。比硬块轻 90% 硬质耐火燃烧器块每立方英尺重 140 至 165 磅。真空成型块每立方英尺仅重 15 至 18 磅。这个重量因素对于屋顶燃烧器尤为重要。经过验证的质量 我们的质量得到了证实,许多燃烧器块制造商购买我们的真空成型燃烧器块用于原始安装。注意:优质的真空成型和纤维衬里技术使我们能够制造出与燃烧器制造商通常提供的形状不同的块。我们提醒客户注意这种可能性,这样可以节省工具和生产成本 可测量的能源效率特性 在燃烧器密集型熔炉中,例如石化工艺加热器,多达 20% 的衬里表面用于燃烧器块。如果这些块是硬质耐火材料,与周围的纤维衬里相比,其绝缘特性相对较差,则衬里的整体热效率会明显降低。一些熔炉无法满足能源要求,仅仅是因为它们的硬块会造成过多的热量损失。纤维衬里和块可以产生更多的热循环,从而降低能源成本。
MIL-STD-202-105 - 气压(降低)。MIL-STD-202-106 - 防潮性。MIL-STD-202-107 - 热冲击。MIL-STD-202-109 - 爆炸。MIL-STD-202-112 - 密封。MIL-STD-202-204 - 振动频率。MIL-STD-202-208 - 可焊性。MIL-STD-202-209 - 射线检查。MIL-STD-202-210 - 耐焊接热性。MIL-STD-202-211 - 端子强度。MIL-STD-202-212 - 加速度。MIL-STD-202-213 - 冲击(指定脉冲)。 MIL-STD-202-214 - 随机振动。MIL-STD-202-215 - 耐溶剂性。MIL-STD-202-217 - 粒子撞击噪声检测 (PIND)。MIL-STD-202-304 - 电阻-温度特性。MIL-STD-790 - 电气、电子和光纤零件规格的既定可靠性和高可靠性合格产品清单 (QPL) 系统的标准实践。
特种涡轮发动机部件部、国防产品部。物理力学测试实验室编制与研究项目各阶段相关的技术备忘录;在科学活动中阐述和展示科学文章(论文);新产品研发课题建议;编制物理力学分析报告;先进材料的物理力学分析;准备测试报告和公告;先进材料的微观结构/微观成分研究(SEM-EDS);增材制造活动:技术、MultiJet、FDM、立体光刻; 3D白光扫描(逆向工程);测试厚涂层和薄涂层:机械测试、等温/循环氧化测试、热冲击。
• 湿热(+40°C,湿度 93%)16 小时(NF EN 60068-2-78) • 低湿热(+50°C),16 小时(NF EN 60068-2-2) • 热冲击:-36°C 和 +43°C 下 20 小时循环(NF EN 60068-2-14) • 极端温度:-20°C 和 +70°C,4 小时(NF EN 60068-2-1 和 NF EN 60068-2-2) • 低温:-36°C,16 小时(NF EN 60068-2-1) • 室温下连续飞行 92 小时,无机械卡住 • 从 1 米高处跌落到混凝土上 18 次(每侧 3 次)后仍能正常工作