本文提出了一个概念模型,描述了地球自然和社会经济子系统的中期和长期共同发展。经济被视为一种平衡的耗散结构,只能以能量和物质的流动来维持。这里强调的独特方法包括通过少量的热力学潜力来捕获人类活动耗尽自然生态系统的经济影响。此观点允许:(i)将有限数量的主要资源的全面整合到成非线性宏观动力学中,这些宏观动力学在物质能量和经济交易方面都是一致的; (ii)包含自然和强迫回收; (iii)包含一个摩擦项,该术语反映了不可能产生(和回收)商品和服务的情况,而不会散发出能量和物质浪费,以及(iv)对人类产生的熵的计算,这是代谢强度和摩擦的函数。分析和数值计算证实了强度和摩擦的作用是可持续性的关键因素,与实际的GDP增长相比,以及资源稀缺,收入不平等和通货膨胀之间的相互作用。比通货膨胀低的不平等社会更可持续的一个更加平等的社会更可持续。我们的方法足够灵活,可以允许各种经济模型嵌入我们的热力学框架中。最后,我们提出开源Eco d YCO软件是在多资源环境中实现经济动态的首次完全实现。
摘要 时间平移对称性破缺是马尔可夫开放量子系统中非稳态多体相(即时间晶体)出现的一种机制。近年来,人们对时间晶体的动力学方面进行了广泛的探索。然而,人们对它们的热力学性质知之甚少,这也是由于这些相的内在非平衡性质。在这里,我们考虑了有限温度环境中的典型边界时间晶体系统,并证明了时间结晶相在任何温度下的持久性。此外,我们还分析了该模型的热力学方面,特别是热流、功率交换和不可逆熵产生。我们的工作揭示了维持非平衡时间结晶相的热力学成本,并提供了一个框架来描述时间晶体作为量子传感等可能的资源。由于我们将热力学量与集体(磁化)算子的平均值和协方差联系起来,所以我们的结果可以在实验中得到验证,例如使用捕获离子或超导电路。
考虑一个量子测量机器的一般显微镜模型,该模型包含量子探头与热水浴的耦合,我们分析了实现量子测量所需的能量资源,其中包括产生系统设备相关性,不可逆的tran tran- tran-统计混合物的确定性混合物,以及确定的静止 - 以及一个光明的复合。至关重要的是,我们没有诉诸其他量子措施来捕获objective测量结果的出现,而是利用热浴的特性,从而重新记录了测量的自由度,从而自然地实现了量子达尔文主义的范式。在实践中,该模型允许我们对序列过程进行Quantative的热力学分析。从第二定律的表达中,我们展示了最小的重新工作工作如何取决于所测量的系统的能量变化加上信息的理论数量 - 表征了测量的效果 - 效率和完整性。另外,我们表明可以执行热力学可使用的测量,从而达到最小的工作支出,并提供响应方案。最后,对于有限的时间测量协议,我们说明了有限的热电学过程中固有的熵产生的上升产生所引起的侵扰工作成本。这重点介绍了测量速度和工作成本的速度之间的出现,除了测量和工作成本的效率之间的权衡。我们将这些发现应用于测量驱动量子发动机的热力学平衡中的新见解。
1。摘要本文讨论了加拿大艾伯塔省天鹅山的开拓性共同生产的地热电厂项目的挑战和机遇。该项目利用了高热梯度储层的现有基础设施,其中底部孔温度从110到120摄氏度不等,通过使用二进制有机兰氨基循环(ORC)发电厂和天然气燃烧涡轮机(NGT)的集成生成系统发电。ORC发电厂将地热热和NGT废热转化为电力。该项目的铭牌容量为21 MW,其中4至6 MW源自可再生地热和废热源。这将温室气体排放量减少了398,000吨二氧化碳,至少二十年的工厂运营寿命。该项目证明了将现有的碳氢化合物基础设施重新利用为可持续能源计划的经济可行性。
我们通过在非微扰水平上引入量子非谐性来研究高压冰的结构和热力学性质。量子涨落使 VIII 相(具有不对称 H 键)和 X 相(具有对称 H 键)之间的相变临界压力从 0K 时的经典值 116 GPa 降低了 65 GPa。此外,量子效应使其在很宽的温度范围内(0K-300K)不受温度影响,这与通过振动光谱获得的实验估计值一致,与经典近似中发现的强烈温度依赖性形成鲜明对比。状态方程显示出与实验证据一致的转变指纹。此外,我们证明,在我们的方法中,VII 相中的质子无序对 X 相的发生影响可以忽略不计。最后,我们高精度地再现了由于氢到氘的取代而导致的 10 GPa 同位素偏移。
摘要 摘要 2020 Elsevier Ltd 世界人口不断增加,随之而来的化石燃料消耗也随之增加,因此有必要寻找新的能源;清洁、廉价和可再生的资源。氢气在各种方法中都被称为清洁和可再生燃料;因此,寻找清洁的氢气生产方式可以被视为应对气候变化和全球变暖的适当解决方案。在本研究中,提出了太阳能驱动的高温蒸汽电解器系统的概念设计,并使用实时模拟器内部代码对其性能进行了热力学研究。在两个不同的地点评估了入口参数对系统性能的影响,并在设计日计算了系统的实时性能。结果表明,所提出的系统能够分离进水中 98% 的现有氢气,并以 1.2 g/s 的速率生产纯氢,总能量和火用效率分别为 21.5% 和 22.5%。此外,据报道,主要的火用破坏器是太阳能集热器,其入口火用的能量损失为 36.4%。根据结果,推断出对热吸收最有效的参数是直接法向辐照度和入射角,而相对湿度没有主要影响。此外,设计的系统在设计日分别在斯特林和巴博尔·诺希尔瓦尼理工大学生产了 52.43 千克和 26.45 千克氢气。这些地点的年平均氢气产量分别估计为 4.98 吨和 3.93 吨。
公共关系集团,企业通信部门Akasaka Biz Tower,5-3-1 Akasaka,Minato-Ku,东京107-6332日本
氧合光合作用是地球上几乎所有生物量生产的原因,并且可能是建立富含多细胞寿命的复杂生物圈的先决条件。地球上的生命已经演变为在广泛的光线环境中进行光合作用,但具有一个常见的基本结构,该建筑的轻度捕获天线系统与光化学反应中心相连。使用轻度收获的广义热力学模型,再加上进化算法,我们预测了可能根据不同强度和光谱曲线而发展的光收集结构的类型。我们定性地重现了多种类型的氧光自养生体的天线系统的色素组成,线性吸收曲线和结构拓扑,并表明,在各种光明环境中,相同的物理原理在不同的物理原理中发展。最后,我们将模型应用于在类似地球的系外行星上存在的代表性光环境,预测氧气和无氧光合作用都可以在低质量恒星周围发展,尽管后者似乎在最酷的M-Dwarfs周围可以更好地工作。我们将其视为迈出基本生物学过程的一般进化模型的有趣第一步,并证明了假设生物学的本质超出地球具有意义。
以12个步骤实现了胞嘧啶分子的优化结构,其优化能为-10749.84 eV。4.94 eV的Homo-Lumo能隙表示化学稳定性。氧原子表现出最负电位,氢原子显示出最积极的电位。状态的密度揭示了4.92 eV的能隙,确认了等效轨道能级。计算出的硬度(2.47 eV)和柔软度(0.41 eV -1)表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。3.19 eV的亲电指数表示强烈的亲电行为。Mulliken电荷分析鉴定H13具有最高的正电荷和最高负电荷的N5。振动分析显示,在3100-3300 cm -1,N-H处的C-H振动为3500-3700 cm -1,而C = O时为1771.10 cm -1。热力学特性,例如热容量,内部能量,焓和熵随温度的增加,而Gibbs自由能降低。
胞嘧啶分子的结构优化通过12步实现,优化能量为-10749.84 eV。4.94 eV的HOMO-LUMO能隙表明化学稳定性。氧原子表现出最负的电势,氢原子表现出最正的电势。态密度显示能隙为4.92 eV,证实了等效轨道能级。计算的硬度(2.47 eV)和柔软度(0.41 eV -1 )表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。亲电指数为3.19 eV,表明亲电行为强。Mulliken电荷分析确定H13具有最高的正电荷,N5具有最高的负电荷。振动分析表明CH振动在3100-3300cm -1 ,NH在3500-3700cm -1 ,C=O振动在1771.10cm -1 。热力学性质如热容量、内能、焓和熵随温度的升高而增大,而吉布斯自由能则降低。