与纯MGSO₄20和MGCl₂分别降低了64.8 kJ/mol的反应激活能量46.2%和79.2%。对本研究中使用的模拟参数进行了测量,每21个复合材料。数值模拟验证了材料的实用性,显示了116.7 W的最大22瞬时放热功率,体积储能密度为237.2 kWh/m³。23这项研究突出了球形培养材材料在低24
盐水合物中的热阻和传质阻力是设计过程中面临的最大挑战。盐水合物颗粒和耦合介质之间的高热阻和潜在接触不良会导致盐未被利用(非活性储存)。因此,求解二维热阻和传质方程可实现更有效的设计,例如矩形通道和圆形翅片管几何形状,便于制造和定制。
对孤立系统中热化及其破坏的研究使人们对非平衡量子态及其对初始条件的依赖性有了更深入的了解。初始条件的作用因量子多体疤痕的存在而突出,量子多体疤痕是一种特殊的非热态,具有潜在的有效超自旋结构,嵌入在原本混乱的多体谱中。自旋海森堡和 XXZ 模型及其在一维和更高维度中的变体已被证明具有精确的量子多体疤痕,表现出可在合成和凝聚态系统中实现的自旋螺旋态的完美复兴。受这些进展的启发,我们提出了实验上可访问的、局部的、时间相关的协议来探索空间热化概况,并强调系统的不同部分如何热化并影响超自旋的命运。我们根据驱动自旋与其余自旋之间的相互作用,确定了铁磁(X 极化)初始状态的不同参数范围,包括局部非热行为,其中驱动自旋有效解耦,充当“冷”点,同时有助于加热其他自旋。我们还确定了超自旋在长时间内保持对局部驱动弹性的参数范围。我们开发了一个实空间和 Floquet 空间图来解释我们的数值观察,并做出了可以在各种实验装置中测试的预测。
本论文探讨了本征态热化假说 (ETH),这是理解孤立量子系统中热行为出现的基石概念。这项工作首先通过遍历性建立经典热化的基础,其中系统会随时间探索所有可访问的微观状态。这个类比为理解 ETH 如何将这个概念转化为量子领域奠定了基础。按照 Mark Srednicki 概述的方法,论文深入研究了 ETH 的核心公式。然后,通过分析波函数、可观测量和它适用的系统类型的限制,研究了对 ETH 的限制。介绍了随机矩阵理论 (RMT) 的讨论,探讨了它与 ETH 的联系及其在通过 Wigner-Dyson 分布理解混沌量子系统中能谱的统计特性方面的作用。此外,论文还探讨了 Berry 猜想,该猜想揭示了大型量子系统中本征态的混沌性质,进一步支持了 ETH 的基本原理。最后,讨论了支持 ETH 有效性的实验,特别是冷原子气体实验。通过回顾 ETH、其理论基础以及其与 RMT 和 Berry 猜想等相关概念的联系,本论文为寻求了解孤立量子系统中热行为出现的学生提供了宝贵的资源。
Lee, J., Kim, S., You, S. 和 Park, Y.-K. (2023) 通过木质纤维素生物质为基础的综合可再生能源系统的热化学转化产生生物能源。《可再生和可持续能源评论》,178,113240。(doi:10.1016/j.rser.2023.113240)这是根据知识共享许可存放在此处的作品的作者版本:https://creativecommons.org/licenses/by-nc-nd/4.0/。如果您想引用,建议您查阅出版商版本:https://doi.org/10.1016/j.rser.2023.113240 https://eprints.gla.ac.uk/293947/ 存放日期:2023 年 3 月 8 日
Mohsen Chahoud 叙利亚原子能委员会 (AECS),邮政信箱 6091,叙利亚大马士革 电子邮件:pscientific1@aec.org.sy 摘要 研究了将热化学储能系统 CaO/Ca(OH) 2 用于家庭应用的可能性。提出的概念基于使用太阳能塔发电厂对氢氧化钙 Ca(OH) 2 进行脱水。生成的氧化钙 CaO 可以输送给消费者,在那里可以使用液态水进行水合。产生的热能可用于房间和水加热。对系统 CaO/Ca(OH) 2 的水合-脱水循环进行了 10 次实验。脱水步骤中使用了具有固定焦点的太阳能聚光器。发现整个氢氧化物材料可以在所有实验中脱水而不会发生任何降解。水合过程中的温度可以通过改变水和氧化钙之间的比例来控制。 关键词 热化学太阳能存储; CaO/Ca(OH)2循环
1简介2 2量子自旋系统4 2.1符号和基本特性。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2当地哈密顿人的光谱差距。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.3圆环上的周期性边界条件。。。。。。。。。。。。。。。。。。。。。。。。。8 3 PEPS和家长汉密尔顿人13 3.1张量表示法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 3.2 PEPS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 3.3家长哈密顿人。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 3.4父母哈密顿族人的光谱差距。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.4.1边界状态和近似分解。。。。。。。。。。。。。。。。。21 3.4.2局部非注入性PEP的近似分解。。。。。。。。。。。。22 3.4.3近似分解条件的仪表不变性。。。。。。。。。。24 4 PEPS的热场Double 26 4.1量子双模型的描述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 4.2 pepo基本张量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 4.2.1星级操作员作为PEPO。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 4.2.2 Plaquette操作员作为Pepo。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 29 4.2.3 peps张量在边缘。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3128 4.2.2 Plaquette操作员作为Pepo。。。。。。。。。。。。。。。。。。。。。。。。。。29 4.2.3 peps张量在边缘。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31
在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。
集中太阳能(CSP)和钙环(CAL)之间的整合正在考虑在可再生能源的大股份的角度考虑,以平滑不可匹配的能量输入的可变性。这项研究的范围是通过在适用于CAL-CSP集成的现实过程条件下在流化床中进行专门的实验运动来研究热化学能量储存(TCE)的CAL过程。通过测量沿迭代的钙化/碳化循环的Ca碳化程度,已经评估了基于石灰石的吸附剂的化学失活,这与转换选定阶段的物理化学炭化相关。经过审查的特性是层粒子的分布,块状密度以及床固体的粒径,密度和孔隙率。也评估了能源储能密度的可达到的值。实验运动的一个了不起的发现是在与二氧化硅砂一起加工时,石灰石的显着停用了。在过程温度下,CAO与二氧化硅砂成分的化学相互作用已被仔细检查,以造成反应性CAO对CO 2摄取的损失。颗粒密度数据的后处理以及N 2入口的孔隙法分析以及定量和定性XRD分析,这表明沙/石灰相互作用可促进总和反应性吸附的孔隙率的强烈降低,而反应性则是反应性的。基于密度的分类,用于评估碳化步骤后分离和未转化的石灰石颗粒,以提高过程效率的目的,通过避免通过工厂的未反应颗粒的流循环流循环。为此,在相关过程温度下每个反应步骤后,已经测量了钙化颗粒和碳酸颗粒的最小流体速度。