用于结合高光谱分辨率和量子效率的X射线光谱的热检测器。这些“微钙化器”通过感测小吸收结构的温度升高来测量吸收单个光子中释放的能量。这种设备的最终能量分辨率受热力学和等温浴之间的热链连接中的热力学功率波动的限制,并且原则上可以低至1 eV。由于噪声贡献(例如热敏电阻中的过量(L/F)噪声)以及能量转换为声子,因此真实设备的性能被降低。我们在这里报告了在存在噪声的情况下,在温度计,X射线吸收和热化,制造技术和检测器优化方面的最新进展。这些改进使我们能够生产出光谱分辨率为17 eV FWHM的设备,该设备在6 keV下测量。
量子电路——由局部幺门和局部测量构建而成——是量子多体物理学的新天地,也是探索远离平衡的普遍集体现象的可处理环境。这些模型揭示了关于热化和混沌的长期问题,以及量子信息和纠缠的底层普遍动力学。此外,这些模型产生了一系列新问题,并引发了传统模拟所没有的现象,例如由外部观察者监控的量子系统中的动态相变。鉴于在构建数字量子模拟器方面取得的实验进展,量子电路动力学也具有重要意义,这些模拟器可以精确控制这些成分。电路元件中的随机性允许高水平的理论控制,其中一个关键主题是实时量子动力学与有效经典晶格模型或动力学过程之间的映射。在这个可处理的环境中可以识别的许多普遍现象适用于更广泛的更结构化的多体动力学。
这项工作扩展了自洽先导起始和传播模型 (SLIM),以评估飞镖和飞镖阶梯式先导对接地物体的雷电附着。SLIM 最初被提出用于评估阶梯式先导的雷电附着。与已充分研究的阶梯式先导雷电附着不同,响应飞镖和飞镖阶梯式先导而引发的向上连接先导是在环境电场明显更快的变化下形成的。此外,这些连接先导可以在同一闪电中先前的击打预先调节的暖空气中形成。扩展模型中还开发了一个分析表达式,用于评估每单位长度热化连接先导所需的电荷。通过分析火箭触发闪电实验中记录的三个附着事件,验证了该模型。发现向上先导的预测特性与测量值之间具有良好的一致性。该模型用于评估在上行闪电回击之前连接先导可以形成的不同条件。
摘要在这项工作中,我们研究了一种场景,其中多个身体相互作用系统中的统一量子动力学仅限于单个激发子空间。我们询问在这样的子空间内部的动力学通常与征征热假说(ETH)的预测有何不同。我们表明,对于某些初始状态和可观察结果,如果发生热化,它将无法实现对ETH的其他关键预测。而是遵循不同的通用行为。我们通过分析长期波动,两点相关函数和超时订购的相关器来显示这一点;分析详细介绍与ETH预测的偏差。我们取而代之的是一种类似伦理的关系,可观察到的矩阵元素,具有非随机偏外的关系,其相关性会改变长期行为并约束动力学。此外,我们通过分析计算衰减至平衡的时间依赖性,表明它与初始状态的生存概率成正比。我们最终注意到,在许多物理场景中,堆积的条件很常见,例如旋转波
由于长程相干性,驱动量子系统的纠缠特性可能与平衡情况不同。我们通过研究一个合适的介观传输玩具模型来证实这一观察结果:开放量子对称简单排除过程(QSSEP)。我们推导出稳定状态下不同子系统之间互信息的精确公式,并表明它满足体积定律。令人惊讶的是,QSSEP 纠缠特性仅取决于与其传输特性相关的数据,我们怀疑这种关系可能适用于更一般的介观系统。利用 QSSEP 的自由概率结构,我们通过开发一种新方法从所谓的局部自由累积量中确定随机矩阵子块的特征值谱来获得这些结果——这本身就是一个数学结果,在随机矩阵理论中具有潜在的应用。为了说明该方法,我们展示了如何从局部自由累积量计算满足本征态热化假设 (ETH) 的系统中可观测量的期望值。
摘要:有限温度下量子场的热性质对于理解强相互作用物质至关重要,量子计算的最新发展提供了一条替代且有前途的研究途径。在这项工作中,我们使用量子算法研究仅涉及费米子的热场理论。我们首先深入研究数字量子计算机上通过量子比特呈现的费米子场,以及用于评估一般量子场论热性质的量子算法,例如量子虚时间演化。具体来说,我们使用量子模拟器展示了 1+1 维马约拉纳费米子热场理论的数值结果,例如热分布和能量密度。除了自由场理论,我们还研究了与空间均匀马约拉纳场耦合产生的相互作用的影响。在这两种情况下,我们都通过分析表明系统的热性质可以用相空间分布来描述,量子模拟结果符合分析和半经典期望。我们的工作是理解热不动点的重要一步,为实时热化的量子模拟做好准备。
(a)H原子的平均速度⟨v H⟩(以M H,T和Boltzmann的常数K b)是多少?(b)计算晶粒在气体原子中被其自身质量M击中的时间τm。以m,a,n H和⟨v h⟩表示τm。(c)在半径a = 10-5 cm的晶粒中评估⟨v h⟩和τm,密度ρ= 3 g cm -3,在n h = 30 cm -3且t = 10 2 k的气体中。(d)如果碰撞是随机的,则晶粒速度会随机行走。由于这些随机碰撞而导致的晶粒动能E的增加速率(DE/DT)0。express(de/dt)0以n H,m h,k b t,a和m表示。[提示:想想从初始状态⃗P= 0开始的晶粒动量⃗P经历的随机行走。⟨p 2⟩的速率是多少?](e)最终将“热化”晶粒运动,并具有时间平均的动能⟨e⟩=(3 /2)k b t。计算时间表
非平衡量子多体系统很难通过经典计算进行研究,因此引起了广泛的兴趣。量子模拟可以为这些问题提供见解。在这里,我们使用一个具有 16 个全连接超导量子比特的可编程量子模拟器,研究了具有淬灭横向场的 Lipkin-Meshkov-Glick 模型中的动态相变。通过测量非平衡序参数、非局部相关性和 Loschmidt 回声,可以观察到融合不同动态临界概念的动态相变的清晰特征。此外,在动态临界点附近,我们获得了 −7.0 ± 0.8 dB 的自旋压缩,显示出多体纠缠,可用于以超过标准量子极限五倍的精度进行测量。基于同时纠缠量子比特的能力和多量子比特状态的精确单次读出能力,该超导量子模拟器可用于研究非平衡量子多体系统中的其他问题,例如热化、多体局域化和周期驱动系统中的突发现象。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
在描述物理系统时,数学表示的选择非常重要,而这种选择通常由手头问题的性质决定。在这里,我们研究了鲜为人知的量子动力学波算子表示,并探索了它与量子动力学标准方法(如维格纳相空间函数)的联系。该方法以密度矩阵的平方根为中心,因此比标准表示具有几个不寻常的优势。通过将其与从量子信息中引入的净化技术相结合,我们能够获得许多结果。这种形式不仅能够在量子和经典动力学的相和希尔伯特空间表示之间提供自然的桥梁,我们还发现波算子表示可以导致实时间和虚时间动力学的新型半经典近似,以及与经典极限的透明对应。然后证明存在许多场景(例如热化),其中波算子表示具有等效的幺正演化,这对应于密度矩阵的非线性实时动力学。我们认为,波算子提供了一种将以前不相关的表示联系起来的新视角,并且是无法以其他方式保证正性的场景(例如混合)的自然候选模型。