摘要超导量子计算机所基于的量子位(Qubits)的能量尺度与具有GHz频率的光子相对应。Gigahertz结构域中光子的能量太低,无法通过嘈杂的室温环境传输,在这些环境中,信号会在热噪声中丢失。光学光子具有更高的能量,并且可以使用高度有效的单光子检测器来检测信号。从微波炉转移到光学频率是量子设备的潜在启用技术。但是,在这样的设备中,光泵可以是热噪声的来源,从而降低了实现。输入微波状态与输出光学状态的相似性。为了研究这种效果的幅度,我们基于基于硝酸锂低语图库模式谐振器的电透射器的亚kelvin热行为进行了建模。我们发现,连续泵有最佳的功率水平,而泵的脉冲操作增加了转换的确定性。
第2章。光弹簧效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.1。理想化的光弹簧。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.2。完整的光弹簧常数和阻尼系数。。。。。。。。。。。。。。25 2.3。机械敏感性和光弹簧增益。。。。。。。。。。。27 2.4。光弹簧对激光功率波动的响应。。。。。。。。。。。31 2.5。。使用计算模型模拟量子光场的量子反作用噪声消除量子。。。。。。。。。。。。。。34
量子计算机和算法的出现对对称和非对称密码系统的语义安全性提出了挑战。因此,实现新的密码原语至关重要。它们必须遵循量子计算器的突破和特性,因为量子计算器使现有的密码系统变得脆弱。在本文中,我们提出了一个随机数生成模型,该模型基于对体积为 58.83 cm 3 的电子系统体积元素热噪声功率的评估。我们通过对每个体积元素的温度进行采样来证明攻击者很难进行攻击。在 12 秒内,我们为 7 个体积元素生成一串 187 位随机密钥,这些密钥将通过量子密码学的特性从源传输到目的地。
我们已经研究了垂直磁性共振(FMR)辅助自旋转移扭矩(STT)垂直MTJ(P-MTJ)的辅助旋转转移扭矩(STT)切换,并使用微磁模拟使用包括热噪声效应的微磁模拟使用不均匀性。具有适当的频率激发,锯可以在磁刻录材料中诱导铁磁共振,并且磁化强度可以在圆锥体中进攻,从垂直方向高挠度。随着通过侧向各向异性变化以及室温热噪声掺入不均匀性的情况下,不同增长的磁化进攻可能显着不合同。有趣的是,即使在不同各向异性的晶粒之间,不同晶粒的进动物也处于相位状态。然而,由于声感应的FMR引起的高平均挠度角可以通过显着降低STT电流来补充STT开关。即使施加的应力诱导的各向异性变化远低于总各向异性屏障。这项工作表明,锯诱导的FMR辅助开关可以提高能源效率,同时可扩展到非常小的尺寸,这对于STT-RAM在技术上很重要,并阐明了这种范式在具有热噪声和材料不显着性的现实情况下这种范式在现实情况下的潜在鲁棒性的物理机制。
我们引入了一个健壮的方案,用于长距离连续变量(CV)测量设备独立的(MDI)量子密钥分布,在该分布中,我们在通过不受信任的继电器介质进行通信的遥远各方之间采用了选择后。我们执行了一个安全分析,该分析允许每个链接的一般透射率和热噪声方差,我们假设窃听器会执行集体攻击并控制通道中的过量热噪声。引入选择后,当事方能够在超过现有CV MDI协议的距离上维持秘密关键率。在中继位置位置的最坏情况下,我们发现当事方可以在标准光学纤维中牢固地沟通14公里。我们的协议有助于克服先前提出的CV MDI协议的率距离限制,同时保持其许多优势。
我们研究了当使用双模压缩真空态作为探针时,在损耗传感中的量子优势。在 PRX 4, 011049 中进行实验演示后,我们考虑了一种量子方案,其中信号模式通过目标,并在测量之前将热噪声引入闲置模式。我们考虑了两种具有实际意义的检测策略:巧合计数和强度差异测量,它们广泛用于量子传感和成像实验。通过计算信噪比,我们验证了即使在强热背景噪声下量子优势仍然存在,而经典方案使用直接受到热噪声影响的单模相干态。这种稳健性来自这样一个事实:在经典方案中信号模式受到热噪声的影响,而在量子方案中闲置模式受到热噪声的影响。为了进行更公平的比较,我们进一步研究了一种不同的设置,其中在量子方案中将热噪声引入信号模式。在这种新设置中,我们表明量子优势显著降低。然而,值得注意的是,在与量子 Fisher 信息相关的最佳测量方案下,我们表明双模压缩真空态确实在整个环境噪声和损耗范围内表现出量子优势。我们希望这项工作能为实验证明损耗参数传感中的量子优势提供指导,这种传感受有损和有噪声的环境影响。
研究了具有不确定因果顺序的切换量子通道,用于受量子热噪声影响的量子比特幺正算子相位估计的基本计量任务。报告显示,不确定顺序的切换通道具有特定功能,而传统的确定顺序估计方法则无法实现这些功能。相位估计可以通过单独测量控制量子比特来执行,尽管它不会主动与幺正过程交互 - 只有探测量子比特会这样做。此外,使用完全去极化的输入探针或与幺正旋转轴对齐的输入探针可以进行相位估计,而这在传统方法中是不可能的。本研究扩展到热噪声,之前已使用更对称和各向同性的量子比特去极化噪声进行了研究,它有助于及时探索与量子信号和信息处理相关的具有不确定因果顺序的量子通道的属性。
振动和机械干扰会将噪声引入射频信号,这意味着量子计算中使用的连接器必须设计得具有机械强度和稳定性,以确保连接牢固且无微音。使用电阻低、导热性高的材料有助于降低噪声。超导材料有时用于高级连接器,以实现接近零电阻,从而最大限度地减少热噪声。
振动和机械态度可以在射频信号中纳入RF信号,这意味着必须在量子计算中使用的连接器进行机械稳健且稳定,从而表明连接保持安全并且不受微小化的范围。使用具有低电阻和高热电导率的材料有助于降低噪声。有时在高级连接器中使用超导材料来达到接近零的电阻,从而最大程度地减少了热噪声。