摘要 目前正在对未来基于 DGPS 的进近和着陆系统进行许多实验,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。对最重要的干扰源进行了研究,研究内容包括它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。1. 引言商用 GPS 接收器可用的典型信号在天线输入端为 -160 dBW(-130 dBm,而 A RINC 规定的为 -134.5dBm),由扩频码扩展至大约 2MHz 带宽(窄相关器为 8MHz),尽管大部分功率位于中心 2MHz 部分。2MHz 中的热噪声功率(kTB)由玻尔兹曼常数 k 得出
最简单、最普遍的放大定义可能来自 Clerk 等人。他们指出,“放大涉及使一些与时间相关的信号变大”[1]。在我们更详细地了解放大过程之前,我们先解释一下为什么“使一些与时间相关的信号变大”在电路 QED 中至关重要,以此来激励放大器。在超导电路的读出过程中,信噪比至关重要。除其他因素外,信噪比还会影响需要进行多少次重复测量才能获得清晰的结果,或者是否可以进行单次读出。读出腔的输出可以被视为量子信号,因为传输线的电磁激发仅涉及几个光子 [2]。从这个寒冷的地方到室温下的测量装置,最初已经很弱的信号会进一步衰减,热噪声和电噪声也会添加到信号中。室温下射频线的本底噪声已经远高于初始信号的激励。因此,如果不对原始信号进行任何类型的放大,几乎不可能看到任何读出信号。现在,图 1.1 中可以看到“使一些时间相关信号变大”如何有助于维持初始 SNR。虽然放大器本身会给信号添加一些噪声,但放大器会通过放大因子 G 抑制放大器后添加到信号中的所有损耗和噪声。实际上,会使用多级放大。如图 1.2 所示,在腔体输出处进行第一次放大之后,通常使用 4 K 的高电子迁移率晶体管 (HEMT) 和室温下的暖放大器进一步放大信号。
摘要 目前正在对未来基于 DGPS 的进近和着陆系统进行许多实验,以提高飞机导航的质量。在航空应用中使用 C/A 码接收器需要很高的可靠性和完整性。本研究调查了使用 C/A 码并在航空电子环境内导航的 GPS 接收器的标准定位服务的潜在电磁干扰源。来自使用与 GPS 和 G LONASS 频段相邻频率的多个通信系统的射频发射给 GNSS 接收带来了相当大的问题。过于拥挤的频谱和微弱的 GPS 信号使来自各种来源的射频干扰成为潜在威胁,必须仔细检查。本文旨在概述潜在的干扰源及其解决方案。确定了这些 RFI 源,并评估了 GPS 和 GNSS 受到这种干扰的脆弱性。这项研究定量地了解了干扰的影响。对最重要的干扰源进行了研究,研究内容包括它们的技术特性、干扰距离以及保持接收器良好性能所需的隔离或抑制要求。还研究了候选缓解技术,并建议在适当的标准中采用选定的技术。1. 引言商用 GPS 接收器可用的典型信号在天线输入端为 -160 dBW(-130 dBm,而 A RINC 规定的为 -134.5dBm),由扩频码扩展至大约 2MHz 带宽(窄相关器为 8MHz),尽管大部分功率位于中心 2MHz 部分。2MHz 中的热噪声功率(kTB)由玻尔兹曼常数 k 得出
灵敏度 - 数字成像 - 像素 - 量子效率 - 复位 - 正向偏置 - 区域板 - 通道电位 - 全帧成像器 - PPD - 采样频率 - 光子散粒噪声 - VGA - 产量 - 暗固定模式噪声 - 反向偏置二极管 - 收集效率 - 逐行扫描 - 动态范围 - 薄膜干涉 - 固定光电二极管 - 光谱灵敏度 - 饱和电压 - 双线性成像器 - 光子传输曲线 - 行间传输图像传感器 - 电荷耦合器件 - 微透镜 - 暗电流散粒噪声 - E SD - 条纹滤波器 - 数码相机 - 拼接 - 高斯分布 - 硅 - 热噪声 - 传感器结构 - 亮度 - 浮动扩散放大器 - 转换因子 - 闪烁 - MOS 电容 - 辐射单位 - 移位寄存器 - 带隙 - 黄色 - 补色 - 光电门 - 列放大器 - 纹波时钟 - 反转层 - CMOS 成像器 - 对数响应 - 普朗克常数 - 电荷泵 - 阈值电压 - 埋通道 CCD - 暗电流 - 噪声等效曝光 - MSB - 转换因子 -缺陷像素校正 - 边缘场 - 分辨率 - 双相传输 - 正透镜 - 角响应 - PRNU - 波长 - 帧传输成像器 - 电荷注入装置 - 测试 - 通道定义 - 摄像机 - 光晕 - 隔行扫描 - 彩色滤光片 - 自动白平衡 - 虚拟相位 - 拖尾 - 单斜率 ADC - 表面电位 - 耗尽层 - 垂直防光晕 - 多相钉扎 - 电子快门 - PAL - 埃普西隆 - 相关双采样 - 蓝色 - CIF - 洋红色 - 填充因子 - 延迟线 - 线性响应 - 规格 - 结深 - 复位噪声 - 线性图像传感器 - 光学低通滤波器 - 二氧化硅 - 光电二极管 - 勒克斯 - 闪光 ADC - 定时抖动 - 拥有成本 - 封装 - 光刻 - 有源像素传感器 - DSP - 积分时间 - 三相传输 - 光子通量 - 晶圆级封装 - 电荷泵 - 滤光轮 - 有效线时间 - 吸收深度 - 玻尔兹曼常数 - 弱反转 - LSB - 水平消隐 - 光栅滤波器 - 帧抓取器 - 原色 - 拜耳模式- 缩放 - 功耗 - 单色仪 - 模拟数字转换 - 光固定模式噪声 - 无源像素传感器 - 彩色棱镜 - SGA - 氮化硅 - 温度依赖性 - 负透镜 - sigma delta ADC - 混叠 - 插值 - 传输效率 - F 数 - 红色 - 动态像素管理 - 栅极氧化物 - 热漂移 - 热噪声 - 扩散 MTF - 有源像素传感器 - 泄漏器 - 1/f 噪声 - 青色 - 信噪比 - 孔径比 - 奈奎斯特频率 - 非隔行扫描 - 像素内存储器 - 四相传输 - 技术 - kTC 噪声 - 辐射损伤 - 离子注入 - MOS 晶体管 - 内透镜 - 光度单位 - 表面通道 CCD - 延时和集成成像器 - 宽高比 - 绿色 - NTSC - 单芯片相机 -可见光谱 - 调制传递函数 - 同步快门 - 马赛克滤光片 - 背面照明 - 色彩串扰 - 量化噪声 - 逐次逼近 ADC - 压缩 - 漏极 - 多晶硅 - 堆叠 - 光子转换 - 飞行时间 - 吸收系数 - DIL - 收集体积 - 孔 - 四线性成像器 - 单相传输 - 填充和溢出 - 收集效率 - 垂直消隐 - 源极跟随器 - 雪崩倍增 - 辐射 - 横向防晕 - 晶圆上测试 - 自感场 - 自动曝光 - 泊松分布 - 电荷复位 - 伽马
由于低成本无人机的普及,小型无人机的高爆检测最近已成为一个非常重要的课题,因为这对安全构成了越来越大的潜在风险[1][2]。FMCW 雷达被认为是最适合无人机检测的解决方案之一,因为它结构简单,具有短距离检测能力[1]-[4]。小型无人机的检测是一项具有挑战性的任务,因为它们的尺寸非常有限,并且采用非反射材料,因此雷达截面 (RCS) 非常小。因此,只有利用毫米波频率、高发射功率以及具有低噪声系数 (NF) 和高动态范围的接收器,才能优化雷达检测范围和分辨率。在这种情况下,氮化镓 (GaN) 微波技术代表了性能最佳的解决方案,因为它们为发射器和接收器微波前端提供了最先进的性能系数[4]-[6]。利用微波频率下卓越的 GaN 功率密度,有利于实现紧凑型高功率发射器,以增强无人机目标的弱回波信号(低 RCS)。另一方面,由于兼具低噪声和宽动态范围特性,GaN 技术在 RX 部分也非常有吸引力 [5]-[9]。这一特性对于用于无人机检测的 FMCW 雷达接收器至关重要,因为 LNA 需要检测非常低的无人机回波信号(接近热噪声水平),同时在存在强干扰/阻塞信号的情况下保持其线性度,这些信号通常是由于雷达杂波和其自身发射器功率放大器的泄漏造成的 [3][4]。在本文中,我们描述了一种基于 GaN 的 Ka 波段 MMIC LNA,可用于 FMCW 雷达接收器,用于小型无人机检测。采用 mmW-GaN 技术可以同时瞄准低 NF、高增益和大动态范围,从而在 Ka 波段上方实现无与伦比的综合性能。
活性胶体是能够自推进的粒子,能在微观尺度上将化学能转化为定向的机械运动 [1]。它们已成为活性物质领域的典范,因为它们表现出相变 [3] 和动态结晶 [4] 等突发行为 [2],也是研究非平衡微观热机的基础 [5–8]。人们已投入大量精力开发一个框架来理解活性物质,并将其与随机热力学联系起来 [9–13],将经典热力学的概念扩展到非平衡系统和个体轨迹。这种方法的一个普遍局限性是,由于热噪声和活性噪声不能沿轨迹明确分离,因此熵的产生不能完全推断 [14]。尽管如此,随机热力学有潜力推动该领域从研究活性物质的特定现象学模型转向开发驱动活性系统的通用热力学框架。活性物质系统在广泛的空间和时间尺度上无处不在[15–17]。在纳米尺度上,单个分子可以充当活性物质[18, 19];在研究最深入的微观尺度上,生物和合成系统起着活性物质的作用[20–24];在中尺度和更大尺度上,动物[25]、机器人[26]、人类群体[27]等作为活性物质运行。所有这些系统所受控的底层物理过程千差万别,如湿与干[16, 28]、欠阻尼与过阻尼[29–32]、热与非热[33–35]等。然而,它们都有一个重要的共同点——非平衡动力学的出现是因为活性物质系统中的每个元素都会消耗能量并耗散
引言:量子假设检验 [1-4] 是量子信息科学基础上最重要的理论领域之一 [5]。在玻色子环境下 [6],一些基本协议包括量子照明 [7-19],旨在在明亮的热噪声条件下更好地检测远程目标的存在,以及量子读取 [20],旨在提高从光学数字存储器中检索数据的速度。这些协议可以建模为量子信道鉴别问题,其中量子资源在检测不同程度的信道损耗方面的表现优于经典策略。在评估量子照明质量时,通常考虑的基本基准之一是使用相干态和零差检测。这被认为是最著名的(半)经典策略,通常用于评估量子资源(例如纠缠)[12,17] 在激光雷达/雷达应用中的优势[21-23]。这种经典策略显然是基于高斯资源(即高斯状态和测量)的,不涉及任何闲散系统。一个悬而未决的问题是确定是否存在另一种基于高斯资源的无闲散策略,其性能严格优于经典策略。在这项工作中,我们肯定地回答了这个问题,展示了使用具有适当优化压缩量的位移压缩状态的优势。对于照射在未知目标上的相同每个模式的平均信号光子数,这种最佳探针能够胜过相干态。虽然这可以在量子照明(即量子激光雷达应用)中得到证明,但在不同的参数范围内,如量子读取的典型情况,这种优势变得更加明显和有用。用于目标检测的优化探针。考虑以二元检验的方式检测目标:零假设
Kush Vora Ninad Mehendale *计算机工程系电子系K.J Somaiya工程学院K.J.Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。 MRI是检测肿瘤的最有效诊断工具。 但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。 深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。 我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。 该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。 提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。 使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。 关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。 封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。 随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。MRI是检测肿瘤的最有效诊断工具。但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。脑肿瘤分为两种不同类型。恶性(癌)和良性(非癌症)。这些肿瘤进一步分为原发性和继发性肿瘤(转移性肿瘤)。原发性脑肿瘤起源于大脑内部,但是当癌细胞从其他器官传播到大脑(肺部到大脑)时,转移性脑肿瘤就会发展。绝大多数原发性脑肿瘤都不癌。死亡率的第十个主要原因是脑肿瘤。在2020年,全球估计,有251,329人死于原发性恶性脑和中枢神经系统(CNS)肿瘤。今天在美国,估计有70万人受到原发性脑肿瘤的影响。这些肿瘤可能是致命的,并对生活质量产生重大影响。女性比男性更有可能获得任何类型的大脑或脊髓肿瘤,而男性则更有可能患上恶性肿瘤。这主要是因为某些类型的肿瘤在一种性别或另一种性别中更为普遍(例如,脑膜瘤在女性中更为常见)。患有恶性大脑或中枢神经系统肿瘤患者的5年生存率
第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑
电磁兼容性 (EMC) 工程师使用“噪声”的概念来描述降低电子设备性能的有害信号。在航空电子应用中,外部和内部 EMI 噪声源都可能干扰敏感的导航和战术设备,甚至可能破坏飞机的控制。航空母舰的大型电子设备舱可能会造成干扰,导致飞机起飞或降落失败。影响卫星传输的 EMI 可能导致战场上的通信故障。出于这些原因,EMI 被认为是一个严重的问题,并且已经开发出许多技术和技巧来确保数据传输系统中的电磁兼容性 (EMC) - 从船上到海底,从航空电子设备到太空,从航空母舰到微型无人机。 EMI 源 EMI“噪声”源可分为三类:1) 由物理系统内的随机波动引起的固有噪声,例如热噪声和散粒噪声;2) 来自电机、开关、电源、数字电子设备和无线电发射器的人为噪声;3) 来自自然干扰的噪声,例如静电放电 (ESD)、闪电和太阳黑子。 固有噪声源可能非常微妙,通常无法识别。所有电气系统都是固有噪声的潜在来源,包括便携式收音机、MP3 播放器、手机等常见设备。这些设备只要开启就会造成干扰。这是因为导电介质或半导体器件中的电子在受到外部电压激发时会产生电流。当外部施加的电压停止时,电子会继续移动,随机地与其他电子和周围材料相互作用。即使没有电流,这种随机电子运动也会在导电介质中产生噪声。人为 为了保护航空电子系统免受人为噪音的影响,商业航班上完全禁止使用故意的射频 (RF) 发射器,如手机、蓝牙配件、CB 无线电、遥控玩具和对讲机。笔记本电脑、手持式扫描仪和游戏机虽然不是故意的发射器,但会产生 1 MHz 范围内的信号,从而影响航空电子设备的性能。导航电缆和其他关键线路沿着机身铺设,乘客坐在几英尺远的地方。由于构成客舱内部的薄介电材料片(通常是玻璃纤维)根本不提供任何屏蔽;而且由于商用客机包含长达 150 英里的电线,这些电线可能像一个巨大的天线一样,因此乘客必须注意有关使用潜在破坏性电子设备的规定。显然,这些内部 EMI 源对飞机来说非常危险,因为它们离它们可能影响的系统非常近。但外部来源,地面上的无线电和雷达发射器,或过往军用飞机的雷达,驾驶舱航空电子设备容易受到多种 EMI 源的影响,包括 iPhone 和其他 PED 的人为干扰,由于这些设备的高功率和高频率,干扰可能更大。如果许多外部和内部 EMI 源还不够令人担忧,铝制机身本身在某些情况下可以充当 1 到 10 MHz 范围内的谐振腔。机身的行为与卫星天线非常相似,可以通过集中人为和自然发生的瞬态信号并将干扰广播到附近的设备来加剧内部和外部 EMI 的影响。一家大型飞机制造商最近发布的一份报告说明了人们对乘客携带的便携式电子设备 (PED) 的持续担忧。商用飞机上这些设备的数量激增,尤其是随着 Apple iPad 等新型笔记本电脑设备的出现。使用 PED 会产生