这种减少的大部分是由于公司建筑物中的天然气使用减少所致,其余的商业建筑中的天然气使用量减少。在64个公司收费的公司站点中,有41个在2023 - 24年的使用情况下减少。气体使用的总体减少部分与该县的天气变暖有关。“加热学天”是响应外部温度所需的预期加热的量度。在此分析中,一个加热度日相当于1 O C以下15.5 O C低于15.5 o C,累积24小时。所使用的温度被当地在Donington Weather Station的当地捕获。在所有理事会建筑物中,从2022-23的1,965下降到2023 - 24年的1,847的供暖学天数量。在理事会建筑物中,供暖学天数的数量不是累积的,因此,安理会的每座建筑物在2023 - 24年都经历了1,847个供暖学天。有关加热学天数的更多信息,请参见大都会办公室气候数据门户。县大厅显示,节省300,419千瓦时的天然气使用情况最大。这主要是由于生物质锅炉的190,000 kWh(13%)的产生增加。通过公共部门的脱碳计划实现了这一代人,以及从2022年到2024年生效的公共部门脱碳计划。逃避排放量从2022-23中的59.7 TCO 2 E增加到2023 - 24年的114.9 TCO 2 E。这些排放是根据理事会在制冷和空调设备上维持的信息计算得出的,以确保遵守F-GAS法规。由于系统中泄漏的性质不同以及随后的维护以充值F-Gase,因此数据经历了较大的年度变化。
诊疗纳米粒子 (NPs) 具有通过提供个性化医疗大幅改善癌症管理的潜力。无机 NPs 因其独特的物理化学性质(包括磁性、热学和催化性能)以及通过功能性表面改性或组分掺杂剂(例如成像和药物控制释放)而产生的优异功能,引起了学术界和工业界的广泛兴趣。到目前为止,只有有限数量的无机 NPs 被应用于临床实践。本综述重点介绍了无机 NPs 在乳腺癌治疗中的最新进展。我们相信,本综述可以为研究和开发无机 NPs 作为有前途的化合物提供各种方法,以期在未来的应用前景中应用于乳腺癌治疗和材料科学。
空间工程与技术研究生课程有四个研究领域,涵盖空间、航空航天和地面工程解决方案开发的整个过程,旨在对空间领域的关键学科进行科学培训,例如推进、空间力学和卫星控制、热学、材料和传感器、可靠性、机载计算、成像相机技术、空间辐射、空间电子设备项目等。它还开发和研究空间领域卫星操作和项目管理的协议。该课程以硕士和博士水平授课,旨在培养高度专业的人才,以满足 INPE、国防部、空军航空航天科学和技术部 (DCTA) 研究所和空间领域公共民间组织、与国家航空航天部门相关的公司和巴西大学的需求。
钒液流电池 (VFB) 是一种固定式储能技术,由于其独特的优势,例如独立于功率和能量的尺寸、无爆炸或火灾风险以及极长的使用寿命,可以在可再生能源融入电网中发挥关键作用。本文的第一部分介绍了 VFB 的主要特征和基本性能参数,这些参数决定了它们的电气、液压、热学和老化特性。后半部分概述了该技术的优缺点、它可以为电网提供的服务以及简短的经济分析。在介绍该技术的基础之后,概述了 VFB 部署的前景和趋势。本文强调的大部分考虑因素都受到在意大利帕多瓦大学电化学能量存储和转换实验室 (EESCoLab) 运行的工业规模 VFB 上进行的研究的启发。
过去 50 年来,摩尔定律一直推动着微电子行业的发展,它为硅片的缩小和不同 IP(知识产权)电路的同质 SoC(系统级芯片)集成提供了模板。展望未来,随着封装和微系统的物理、电气、热学和热机械属性的变化,HI 日益成为摩尔定律的补充,提供更完善的功能 [1-7]。现有和新型先进封装架构是维持和促进微电子行业增长的主要推动因素 [8-22]。这些架构支持新型异构 SiP(系统级封装)配置,以实现成本性能优化的微电子系统。近年来,许多使用先进 HI 的产品纷纷问世,证明了这一领域的重要性 [23-28]。
简要概述了量子点及其应用。这些伪原子或人造原子提供了广泛的实际应用,因为它们的尺寸、形状和组成都是可调的。对其光学、热学、电子学和传输特性进行理论研究的基本要素是能谱,这可以通过数值方法获得。最简单、最可靠的方法之一是基于有限差分方法的方法。提到了该方法的基本方法。针对不同点尺寸的球形和立方体空间限制,给出了单电子 GaAs 和 InAs 量子点能级的一些结果。发现形状的影响与量子点的半导体材料类型无关。与球形限制相比,立方体限制中的能级更高,这可以解释为由于更高的表面与体积比。此外,还发现 InAs QD 的能量值高于 GaAs QD,这是由于两种不同材料中电子的有效质量不同。关键词:量子点;数值模拟;有限差分方法
摘要:随着晶体管的深度扩展和复杂的电子信息交换网络的发展,超大规模集成电路(VLSI)对性能和功耗提出了更高的要求。为了满足海量数据处理的需求和提高能效,仅提高晶体管的性能是不够的。如果数据线的容量没有相应增加,超高速微处理器也是无用的。同时,传统的片上铜互连已达到其电阻率和可靠性的物理极限,可能不再能跟上处理器的数据吞吐量。作为潜在的替代品之一,碳纳米管(CNT)已引起人们的广泛关注,有望成为未来新兴的片上互连,并有望探索新的发展方向。本文重点研究了当前片上互连的电气、热学和工艺兼容性问题。我们从不同的互连长度和硅通孔(TSV)应用的角度回顾了基于CNT的互连的优势、最新发展和困境。
分子结构:本讲座探讨聚合物结构,重点介绍其分子排列,包括线性、支链和交联形式,以及这些结构如何影响强度、柔韧性和热稳定性等特性。了解这些关系是设计用于各种应用的聚合物的关键。 聚合物固体结构:本讲座研究聚合物固体的结构,重点介绍晶体、非晶态和半晶体排列。它讨论了这些结构变化如何影响机械、热学和光学特性,影响它们在工程和工业应用中的使用 聚合物的弹性:本讲座介绍聚合物的弹性,重点介绍其在应力下变形和恢复的能力。它解释了影响弹性的因素,例如分子结构、温度和交联,并强调了在柔性和弹性材料中的应用 粘弹性:本讲座探讨粘弹性,即聚合物在应力下同时表现出粘性(流动)和弹性(变形)行为的特性。关键主题包括时间相关响应、应力松弛和蠕变,并提供记忆泡沫和生物医学设备等材料的应用示例。