分子表面活性剂一般为两亲性分子,由亲水基团和疏水基团组成,这些两亲性分子倾向于在水/油界面处进行吸附,亲水基团浸没在水中,疏水基团浸没在油中,可以有效降低界面张力(Ren等,2019;Rosen和Kunjappu,2012)。但分子表面活性剂在界面处的锚定处于吸附-解吸的热平衡状态,因为分子表面活性剂可以在热运动的驱动下从界面处解吸,乳液会缓慢聚结(Borwankar和Wasan,1988)。此外,由于Ostwald熟化,内部压力大的小液滴会变小,而内部压力小的大液滴会变大(Voorhees,1985)。在液滴聚结和Ostwald熟化作用的影响下,乳状液的平均尺寸会随着时间的推移而缓慢增加,从而降低其总界面能,最终导致相分离(Chesters,1991;Evans & Needham,1987),此时体系的总界面面积最小,总界面能最低。另一方面,固体颗粒,也称为胶体表面活性剂,能够长期稳定两个不混溶相的乳状液(Ramsden,1903)。由胶体表面活性剂稳定的稳定乳状液称为Pickering乳状液(Pickering,1907)。与传统分子表面活性剂稳定的乳液相比,胶体表面活性剂稳定的 Pickering 乳液具有许多独特的性质:(i)胶体表面活性剂从水/油界面的解吸能比热能高几个数量级,导致胶体表面活性剂在界面处发生不可逆吸附,从而具有优异的乳液稳定性( Aveyard,Binks,& Clint,2003 ;Binks,2002 ;Pieranski,1 980);(ii)胶体表面活性剂可以由生物相容性材料制成,表现出良好的生物相容性( Yang,Fu,Wei,Liang,& Binks,2015); (三)胶体表面活性剂可以设计用于实现具有多种功能的Pickering乳液,例如pH,温度或光触发响应(Tang,Quinlan和Tam,2015;Wei,Yu,Rui和Wang,2012;Hao等,2018)。Pickering乳液可以为多学科研究提供独特的平台,并将在科学研究和工业应用中发挥越来越重要的作用。这里我们对Pickering乳液系统进行了全面的回顾。主要涵盖三个方面:(i)粒子特性(包括粒子两亲性、浓度、大小和形状)对 Pickering 乳液的影响;(ii)两亲性聚合物的制备
摘要:在我们迅速发展的技术环境中,是对储能系统的有效且智能的管理至关重要的。该项目推出了现代电池管理系统模块,以优化性能,确保安全性并促进可充电电池的可持续性。利用尖端技术,例如微控制器和物联网(IoT)。可再生能源的整合以及对便携式电子设备的需求不断增长,导致人们对有效的储能解决方案的需求不断增长。该项目介绍了使用Arduino微控制器和物联网的BMS。BMS是本文中引入的,用于在充电和放电过程中连续监视和分析电池温度。BMS包括框图和使用诸如库仑计数的方法,用于估算的状态和CCCV,以进行健康评估状态。数据,包括电池状态,温度和电压,自动存储在物联网平台上的内容上,可以进行彻底的电池分析和及时的发行解决方案。关键字:存储系统,电池管理系统(BMS),物联网(IoT),电池温度监控,充电状态(SOC),健康状况(SOH),充电和排放。I.在迫在眉睫的未来中引入,电动汽车将是运输的主要形式。基于锂的可充电电池将被广泛使用。这些电池组将需要管理和不断监控,以保持电动汽车的安全性,可靠性和效率。电池管理系统(BMS)包括:(1)电池级别监控系统(2)最佳充电算法和单元/热平衡电路。电压,电流和温度测量值用于估计电池系统的所有关键状态和参数,例如电池阻抗和容量,健康状况,充电状态以及剩余的使用寿命。电动汽车中的电池(EV)由于化学反应而随着时间的推移而降低,从而降低了其能量存储能力。减轻降解,控制充电和排放曲线,尤其是在不同条件下的降解。电池寿命还受温度波动和频繁的高电荷/放电周期等因素的影响。尽管偶尔会引起安全问题,但设计具有安全功能和自动截止的精心设计的EV系统通常是安全的。可以覆盖各种电池类型并提供全面保护的灵活的电池管理系统(BMS)已成为最近电动汽车开发的重点。充电状态是安全电池充电和放电的关键参数。它代表电池相对于其额定容量的电流容量。SOC有助于管理电压,电流,温度和其他与电池相关的数据。准确的SOC计算可防止过度充电和过滤,这可能会损坏电池。此外,储能解决方案的安全性和可持续性是最重要的关注点,尤其是在电动汽车,可再生能源网和便携式电子小工具等应用中。II。 文学评论T. Sirisha等。II。文学评论T. Sirisha等。在[1]中讨论电池对电动汽车的重要性的重要性,并引入了电池管理系统(BMS),以帮助确保电池系统的安全性和最佳性能。BMS旨在始终监视电池,并在充电和放电期间测量每个电池电池的温度。使用库仑计数法实施了电荷状态(SOC)估计,并且使用CCCV确定电池的健康状况(SOH)。该论文还讨论了物联网在“ Thing Thing of Things Speak”上自动存储电池,温度和电压数据的使用。作者强调了对电池进行彻底调查以快速解决可能出现的任何问题的重要性。总体而言,该论文提供了
有几种动机将重力理论扩展到爱因斯坦的一般相对论(GR)之外。所有试图用量子物理学调和该理论的所有尝试都以额外的场,高阶运动方程或高阶曲率不变性的形式引入偏差。例如,以骨弦理论的低能限制(在字符串理论中最简单)产生ω= - 1 brans-dicke理论而不是gr,这是标量张量理论的原型(并且ω是brans-dicke coupling)[1,2]。但是,研究重力理论的最引人注目的动机来自宇宙学。例如,数据最受数据偏爱的通用模型,即starobinsky inftion,包括对GR的量子校正。最重要的是,在基于GR的标准λCDM模型的领域中,缺乏对当今宇宙加速扩张的令人满意的理解:它要求人们引入一种惊人的宇宙学常数或另一种形式的Ad Hoc Dark Energy,其本质仍然难以置信[3]。在任何情况下,即使承认黑暗能量的存在仍然留下λCDM的其他问题,例如哈勃张力[4,5],对同样神秘的暗物质的要求以及困扰着宇宙学和黑洞物理学的奇异性问题。因此,研究重力理论以解决或减轻这些问题是合理的。修改GR的最简单方法是添加标量(巨大的)自由度,这导致了Bransdicke Gravity [6]及其标量张紧概括[7-10]。f(r)重力理论被证明是标量调整理论的子类,非常受欢迎,可以解释当前的宇宙加速度而没有暗能量([11],有关评论,请参见[12-14])。在过去的十年中,旧的Horndeski Gravity [15]进行了重新审视和研究(有关审查,请参见[16])。这类理论被认为是二阶运动方程式的最通用的标量张力重力,但随后发现,如果满足适当的退化条件,则更一般性的更一般的变性高阶标量表(DHOST)理论允许第二阶段的二阶方程(请参阅[17])。Horndeski和Dhost理论在其行为中包含任意功能,这使得方程非常繁琐,并且很难进行研究。多人事件GW170817/grb170817,[18,19]证实了以光速传播的引力波模式基本上排除了Horndeski理论,其具有最复杂的结构[20] [20] [20],但许多可能性(对应于动作中的四个免费)。因此,很难掌握这些理论及其解决方案的详细物理含义,许多工作必定仍与形式的理论方面相关,并寻求分析解决方案。当该理论的标量场的自由度φ的梯度是时代的[21-23]时,这种有效的流体描述是可能的。武装这些概念,可以将GR描述为重力的热平衡状态试图获得标量调节引力的物理直觉(包括可行的Horndeski理论),可以通过有效的脉动描述来解释它是富有成效的,其中(Jordan框架)方程将作为有效的EINSTEIN方程式和右手置于右手,以右手的方式写入,并以右侧的方式写入。耗散液[21 - 24]。在这种情况下,使用ECKART在耗散流体的第一阶热力学[25]中提出的三个本构关系[25],我们能够引入有效的“重力温度”,以及剪切和散装粘度粘度系数[24,26,27]。
可编程量子仿真的新生平台可在近似隔离的系统中前所未有的访问对远程平衡量子多体动力学的新制度的访问。在这里,实现对量子多体纠缠的精确控制是量子传感和计算的重要任务。广泛的理论工作表明,这些能力可以实现具有拓扑的方法和临界现象,这些阶段和关键现象表现出了拓扑合理的方法,可以创建,保护和操纵量子纠缠,从而对大量的错误进行自我纠正。迄今为止,实验实现已局限于经典(非输入)对称性的OR- 1-5。在这项工作中,我们证明了一个新兴的动态对称性受保护的拓扑阶段(EDSPT)6,在Quastinuum系统模型H1诱捕的ION量子处理器7中的十171 Yb +超固量量子的准驱动阵列中。此阶段表现出动态保护的边缘量子位,免受控制误差,串扰和流浪场。至关重要的是,这种边缘保护纯粹依赖于紧急的动力对称性,这些动力对称性绝对稳定在通用相干扰动中。此属性对于准二驱动的系统很特别:正如我们所证明的那样,定期驱动的Qubit-Array的类似边状态容易受到对称性破坏错误的影响,并迅速解压缩。我们的工作为实施更复杂的动力学拓扑订单8,9铺平了道路,这将使量子信息的错误操纵。mbl可以保护“热”,密集且驱动强的物质中的长寿命量子相干动力学。提供理解和分类新型的普遍动力学现象(稳定阶段和关键现象的动态类似物)可能会在孤立的量子多体系统中引起的基本科学挑战。早期研究已经对热化和混乱10的量子机械基础产生了深入的见解,并且已经证明了如何通过多体定位(MBL)通过人工随机性和混乱来预防热化。它可以启用具有固有动力学量子相的新类别,其特性在静态热平衡中从根本上被禁止,例如动态对称性破坏和拓扑8。从实际的角度来看,通用和量子相干的动力学行为诱人地提供了错误的弹性方法来创建,保护和操纵量子多体纠缠 - Quantum Compuce的驱动力。要执行量子计算,人们面临着隔离Qubits以保持其连贯性的愿望与强烈相互作用量子的愿望之间的权衡,以执行计算。即使是从环境反向分解的完美隔离中,由于流浪场,栅极错误校准,跨言论等,强烈的Qubit间耦合不可避免地会导致残留,连贯的误差,从而破坏了计算。也许在违反直觉上,相干错误可能比不连贯的错误更具破坏性。尤其是,与不连贯的误差相比,相干误差的n门引起的不忠性可以随着〜n 2ϵ2的形式增长。尽管对算法性能产生了巨大的有害影响,但连贯的错误仍在挑战。标准的随机台上标记过程,例如,将相干和不相干的误差组合到单个有效的每门误差中,这可以显着高估与计算相关的结构性电路的准确性。采用动态脱钩脉冲序列(DDS)是一种时间悠久的方法,可以减轻与不受控制的静态流浪场相关的某些类型的相干误差。然而,对于使用全局单旋旋链控制的传统自旋回波协议,脱钩脉冲中大小的略微缺陷会累积并破坏时间〜1 /ϵ的分离。相比之下,在理论上,动态阶段8的最新工作已经预测,多自旋相互作用的局部控制可以实现自然校正的DDS,这些DDS固有地对抗大型相干错误。这些方案的鲁棒性来自动力学的巨大量化拓扑不变。
物质的三个状态是固体,液体和气体。- **固体**:在这种状态下,分子紧密地包装在一起,几乎没有移动的自由。这会导致刚性结构保持其形状和体积,无论外部压力或温度变化如何。固体的一个例子是冰,在标准大气压力下0°C以上加热时,它仅在水中融化。- **液体**:在液态下,分子靠近,但具有足够的能量可以自由移动。这种柔韧性允许液体在保持恒定体积的同时采用其容器的形状。液体的一个例子是水,它可以以低于0°C的冰或100°C以上的蒸汽存在。- **气**:在气态状态下,分子具有足够的能量,可以自由和快速移动任何方向。他们不会相互互动,这意味着气体往往会扩展以填充容器,同时保持其体积和形状。气体的一个例子是氧气,随着温度的降低,它变得更加致密,并且能够散布得较低。由于其分子之间的相互作用,每个物质都表现出独特的特性。这些分子的能级确定物质在给定的温度和压力下是否保持固体,液体或气态状态。物质具有四个主要状态:固体,液体,气体和血浆,但我们将重点放在前三个。固体具有确定的形状和体积,颗粒紧密堆积在一起。这些现象是在凝结物理学中研究的。液体具有其容器的形状,具有确定的体积,颗粒自由移动但仍然相互作用。气体还具有其容器的形状,既没有明确的形状也不具有确定的体积,并且粒子高度可移动,彼此弱吸引。在低温下,固体材料中的电子可以分为不同的阶段,包括具有零电阻的超导状态。磁性状态,例如铁磁性和抗铁磁性,也可以视为在特定模式中旋转对齐的物质阶段。在恒星或早期宇宙中发现的极端条件下,原子可以分解成其组成部分,从而导致物质或夸克物质,这是在高能量物理学中研究的。对20世纪物质特性的理解导致识别了许多物质状态,包括一些值得注意的例子。固体在没有容器的情况下表现出明确的形状和体积,而无定形固体缺乏远距离顺序。晶体固体的原子有常规图案,准晶体显示长期顺序,但没有重复模式。多态材料可以存在于不同的结构阶段,这些阶段被认为是物质的独立状态。液体符合其容器,但保持恒定的体积,而气体则膨胀以填充容器。介质状态(例如塑料晶体和液晶)在固体和液体之间表现出中等特性。这些现象在1920年代进行了预测,但直到1995年才观察到。超临界流体结合了液体和气体的特性,存在于高温和压力下,其中液体和气体之间的区别消失了。等离子体与气体不同,其中包含大量的游离电子和对电磁力反应强烈反应的电离原子。Bose-Einstein冷凝物是玻色子占据相同量子状态的相,而费米米奇冷凝物涉及像玻色子一样表现的成对费米子。超导性是一种现象,当某些物质冷却以下时,某些物质表现出零电阻和磁场的驱动。该状态具有各种形式,包括BCS理论所描述的常规超导体和破坏额外对称性的非常规的超导体。此外,铁磁超导体与铁磁性显示出固有的共存,而Charge-4E超导体则提出了一种新的状态,其中电子被绑定为四倍。材料可以根据其费米表面结构和零温度直流电导率进行分组。这导致将分类为金属,绝缘子或两者之间的东西。金属可以进一步归类为费米液体,在费米表面具有明确定义的准粒子状态,也可以将其表现出非常规性的非纤维化液体。绝缘子以不同的形式出现,例如由于带隙,莫特绝缘子引起的带绝缘子,由于电子相互作用而导致的莫特绝缘子,由于无序诱导的干扰效应而引起的安德森绝缘子以及电荷转移的绝缘子,在这些原子之间电子传递。在开始时,目前尚不清楚哪些条件盛行。时间晶体即使在最低的能量状态也表现出运动,而隐藏状态在热平衡中无法实现,但可以通过光激发或其他方式诱导。微相分离涉及统一系统中的不同相,并且链式状态在高温和压力下结合了固体和液体性能。其他现象包括具有自发性应变的铁弹性状态,通过明显质量连接的光子分子,在极高压力下退化的物质以及各种假设状态(如夸克物质,奇怪的物质和颜色玻璃凝)。此外,已经提出了颜色的超导性和夸克 - 格隆血浆,其中提出了夸克可以在gluons海洋中独立移动的夸克。这些阶段通常涉及高能条件,例如在恒星内部或早期宇宙中发现的条件。随着宇宙的扩展,温度和密度降低,引力开始分离,这种现象被称为对称性破裂。