通过降水加热诱导海洋上的正均匀PPE异常,从而导致能量下降到扰动动能(PKE)和大规模的异常气旋。对于NAT 1,三极降水异常会导致三极PPE异常。发生异常的能量转化,在PPE异常梯度很大的情况下,由热风关系得出的能量平衡来解释。PKE在15 8和50 8 N(25 8和75 8 N)左右增加(减少),在亚热带和亚极区域形成异常的反气旋和旋风,分别是北大西洋振荡(NAO)。NAT 2和AMO 2的反向保持。作为海洋模式的阶段交替,依次诱导Nau 2,Nao 2,Nau 1和Nao 1。在多年循环中,累积的能量过程与延迟效应有关,而NAU和NAO之间的方差解释差异归因于反馈机制。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
塞内加尔花盆盆地中的农业生态系统经历了长时间的高温和干旱,这破坏了土壤微生物群落的稳定性。这项研究评估了该稳定性如何受房屋和外场的农业实践以及热应激的持续时间的影响。,我们从有机耕种的田野中收集了土壤,这些土壤受到了粪便(Homefields)的段落,以及很少有(外场)的田地。土壤样品在60°C下以3、14和28天的形式提交人造热应激,然后在28°C时恢复28天。我们通过量化C矿物质来检查微生物群落的功能稳定性,并通过高通量DNA测序表征了社区分类学组成的稳定性。我们发现,微生物群落对两种田地的土壤中的热应激的抗性低。然而,粪便的做法确实会影响微生物群落的功能稳定性如何响应不同的热应激持续时间。al-尽管两种土壤中的功能稳定性均未完全回收,但在Homefield土壤中,微生物群落的弹性似乎更大。
基于弹性半空间理论的功率模块分布式压装均衡封装技术 常瑶,李成敏,IEEE 学生会员,罗浩泽,IEEE 会员,李武华,IEEE 会员,Francesco Iannuzzo,IEEE 高级会员,何翔宁,IEEE 研究员 摘要 – 本文研究了分布式压装(DPP)封装技术,以实现芯片的均衡热应力。在现有的集中压装(LPP)方式下,芯片上的机械应力分布本质上是不均匀的,并且与热应力分布相耦合,可以用弹性半空间理论模型来描述。通过分散集中压装载荷并均匀定位载荷,制定了夹紧阵列矩阵,并比较了不同夹紧方式下的机械应力分布。然后,选择了一种满足均衡应力分布和封装成本之间权衡的 3*3 夹紧方法。同时将汇流排与散热器集成在一起,提高功率模块的功率密度。最后,实现了DPP原型机,通过改变芯片周围的压力并对其进行加热,比较了原型机内部并联芯片之间的热分布,验证了所提出的基于弹性半空间理论的DPP封装技术对热应力平衡的影响。1
过去,驾驶敞篷飞机的飞行员在执行飞行任务时几乎没有或根本没有环境保护措施,也没有保护系统来减轻环境压力。随着现代飞机、防护服和救生设备的出现,热应力(热或冷)似乎不再是现代飞行员的重大担忧。然而,当今航空业使用的防护系统和设备创造了新的环境,飞行员仍然面临热应力的挑战。例如,封闭式驾驶舱会因太阳辐射的温室效应而产生热应力。防护服 [抗荷服、核生化 (NBC) 装备] 增加了执行任务的难度,增加了热应力和脱水风险。机组人员或地勤人员与发动机产生和/或从停机坪或驾驶舱反射的热量距离过近也令人担忧。在飞行前、滑行或起飞待命期间工作(地勤人员)或户外等候(机组人员)时,周围环境本身会进一步加剧这种热应激。地勤人员和机组人员长时间处于热应激和脱水状态,会改变认知功能、延迟反应时间、增加错误率、降低体力、损害驾驶舱管理,并增加中暑或受伤的风险。虽然存在热缓解系统(空调、内置服装冷却系统),但它们的共同作用
1。Han J,Norio n(2001)混合热传导边界的热应力问题周围是一个任意形状的孔,在均匀的热孔下裂缝。J热应力24(8):725–735 2。Murakami Y等人(1987)应力强度因子手册,2:728。Pergamon Press/纽约牛津/首尔/东京3。Murakami Y等人(1992)应力强度因子手册,第三版。Pergamon Press/纽约牛津/首尔/东京,P 728 4。sih GC(1962)在裂纹尖端附近的热应力的奇异特征上。ASME,J Appl Mech 29:587–589 5。Hasebe N,Tamai K,Nakamura T(1986)对均匀热流下的扭结裂纹的分析。 ASCE,J ENG MECH 112:31–42 6。 chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。 J Therm Recors 15:519–532 7。 Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。 J THERM压力16:215–231 8。 Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。 J Therm Rescorm 21:129–140 9。 Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。 J THERM压力15:85–99 10。 Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。 J THERM压力17:285–299 11. Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。 int J Sol结构30:3899–391 12。 ASME,J Appl Mech 27:635–639 13。Hasebe N,Tamai K,Nakamura T(1986)对均匀热流下的扭结裂纹的分析。ASCE,J ENG MECH 112:31–42 6。 chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。 J Therm Recors 15:519–532 7。 Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。 J THERM压力16:215–231 8。 Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。 J Therm Rescorm 21:129–140 9。 Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。 J THERM压力15:85–99 10。 Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。 J THERM压力17:285–299 11. Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。 int J Sol结构30:3899–391 12。 ASME,J Appl Mech 27:635–639 13。ASCE,J ENG MECH 112:31–42 6。chen y,Hasebe N(1992)内部板块中热绝缘曲线裂纹问题的新积分方程。J Therm Recors 15:519–532 7。Chao CK,Shen MH(1993)在热弹性培养基中使用术的明确解决方案。J THERM压力16:215–231 8。Chung HD,Beom HG,Choi Sy,Earmme YY(1998)圆形弧形裂纹的热弹性分析。J Therm Rescorm 21:129–140 9。Ting TC,Yan G(1992)由于热流而引起的各向异性双层质量的界面裂纹的R -1/2(LNR)奇异性。J THERM压力15:85–99 10。Chao CK,Chang RC(1994)不同各向异性介质中的热弹性界面裂纹问题。J THERM压力17:285–299 11.Shen SP,Kuang ZB(1998)双压电介质中的界面裂纹以及与点热源的相互作用。int J Sol结构30:3899–391 12。ASME,J Appl Mech 27:635–639 13。Florence L,Goodier JN(1960),由于绝缘卵形孔对均匀热流的干扰引起的热应力。Hasebe N,Tomida A,Nakamura T(1988)由于均匀的热量吹动而导致的圆形孔的热应力。Yobayexiqe 11:381–391 14。 tuji M,Hasebe N(1991)裂纹的热应力,该裂纹是由于均匀的热量吹动的菱形孔的一角。 Trans JPN Soc Mech Eng 57:105-110(日语)Yobayexiqe 11:381–391 14。tuji M,Hasebe N(1991)裂纹的热应力,该裂纹是由于均匀的热量吹动的菱形孔的一角。Trans JPN Soc Mech Eng 57:105-110(日语)
根据眼镜镜头和透明显示窗口所需的聚合物基板上的反射涂料必须满足其环境稳定性的挑战性要求。聚体和无机涂层的热性质不匹配会导致应力,从而降低了涂层聚合物的耐用性和尺寸稳定性。这项研究表明,应在聚合物底物而不是无机底物上执行应力的前拟应力测量值以记录残留膜应力。此外,在聚合物底物上的沉积过程中和之后,还采用了弹性多层的概念来计算单膜内部的应力梯度和抗反射涂层。为开发高稳定的涂层聚合物光学元件,必须考虑到整个涂料的应力梯度,并应用特殊的涂层设计和光学涂层涂层沉积参数。