C.l 管道 ................................................................................................................................ 81 C.2 空气整流器 .............................................................................................................. '" .............................................................................................. 81 C.3 热电偶网格 ........................................................................................................................ 81 C.4 喷嘴 ................................................................................................................................ 84 C.5 加热器 ................................................................................................................................ 84 C.6 鼓风机 ................................................................................................................................ 85 C.7 加湿器 ................................................................................................................................ 85 C.8 冷凝水收集架 ................................................................................................................ 87 C.9 盘管和冷却器系统 ........................................................................................................ 87
NSA2860是一款针对电阻式压力传感器、热电偶、RTD等电阻式或电压式传感器的高集成度专用集成电路。由于NSA2860集成度高,应用范围广泛,本文将详细介绍其硬件外围电路,以便用户对各类典型应用有针对性的了解。
TEM 样品架边缘的 1 厘米 × 2 厘米空间内装有 Naoyuki Kawamoto 开发的纳米热电偶(即微型温度计)。该装置的边缘有一个显眼的水母形铜部件,一对探针从该部件延伸而出。探针(附在铜部件底部的球上)可以在三个维度上移动,精度为十亿分之一米。Kawamoto 将探针尖端与样品表面的纳米级区域接触,并通过施加从 TEM 源发射的电子束对其进行加热。利用该技术,他在 2018 年首次成功直接观察了复合材料内的导热路径。随后,他在 2023 年开发了一种将脉冲电子束应用于样本的技术,从而能够定期加热并成功测量样本内热波传播的幅度和速度。*其中一个探针由铬镍合金(镍铬合金)制成,而另一个探针由康铜(铜镍合金)制成,其尖端经过电解抛光,直径细至 8 纳米。纳米热电偶的温度分辨率为 10 -2 K。(实际尺寸)
2.1 I/O 模块描述................................................................................................................7 2.2 I/O 模块规格................................................................................................................10 数字输入模块................................................................................................................10 数字输出模块................................................................................................................20 模拟输入模块......................................................................................................................30 模拟输出模块......................................................................................................................37 热电偶输入模块....................................................................................................................42 RTD 输入模块......................................................................................................................44 高速计数器模块....................................................................................................................46
摘要:尽管已经展示了各种微观和中观尺度的金属打印工艺,但打印基于合金与另一种合金/金属之间界面的功能设备(如热电偶、热电堆和热通量传感器)需要打印合金的工艺。此外,这些设备需要高质量的结晶合金才能发挥其可接受的功能。本文首次报道了从单一电解质中共电沉积打印单相固溶体纳米晶铜/镍 (Cu/Ni) 合金,该合金具有各种可控成分(Cu100Ni0 至 Cu19Ni81)。打印的合金是纳米晶体(<35 纳米),连续且致密,没有明显的孔隙度,具有出色的机械和磁性,无需任何后处理退火(如热处理)。此外,还展示了使用此工艺制造的功能热电偶。这种工艺不仅可用于制造功能设备,还可以通过打印用于材料表征的合金成分连续库来促进合金的基础研究。关键词:直写打印、受限电沉积、合金打印、铜/镍合金、共电沉积、机械性能、磁性■ 介绍
图 2:基于 24 小时 TEG 的能量收集系统的实验研究。(A)照片显示,在马萨诸塞州波士顿东北大学屋顶测试 24 小时 TEG 设备。插图描绘了横截面示意图和 TEG、太阳、环境和外层空间之间的能量流动。(B)24 小时 TEG 模块示意图,由黑色涂层两用铜板组成,既可用作太阳能加热器,又可用作辐射冷却器。TEG 模块使用导热膏与铜板和散热器连接。将铝制散热器插入土壤中,在白天释放热量,在夜间吸收热量。 TEG 模块的顶视图 (C) 和侧面视图 (D)。(E) 设备的顶视图,带有土壤湿度计以显示土壤中的湿度水平,带有 K 型热电偶的挡风玻璃用于监测环境温度,热电偶用于记录 TEG 模块顶部和底部表面以及土壤中两个不同位置的温度。(F) 展示基于 TEG 的 24 小时太阳、外太空和土壤之间能量收集系统的运行原理的示意图。
静电传感与驱动:静电传感器与驱动的介绍、平行板电容器、平行板电容器的应用、指状电容器、梳状驱动器的应用。热传感与驱动:介绍、基于热膨胀的传感器与驱动、热电偶、热电阻、应用。磁驱动:基本概念与原理、微磁元件的制造、MEMS 磁驱动的案例研究。
