开发了一种新的基于物理的模型,该模型可以准确预测从温度限制 (TL) 到全空间电荷限制 (FSCL) 区域的热电子发射发射电流。对热电子发射的实验观测表明,发射电流密度与温度 (J − T) (Miram) 曲线和发射电流密度与电压 (J − V) 曲线的 TL 和 FSCL 区域之间存在平滑过渡。了解 TL-FSCL 转变的温度和形状对于评估阴极的热电子发射性能(包括预测寿命)非常重要。然而,还没有基于第一原理物理的模型可以预测真实热电子阴极的平滑 TL-FSCL 转变区域,而无需应用物理上难以证明的先验假设或经验现象方程。先前对非均匀热电子发射的详细描述发现,3-D空间电荷、贴片场(基于局部功函数值的阴极表面静电势不均匀性)和肖特基势垒降低的影响会导致从具有棋盘格空间分布功函数值的模型热电子阴极表面到平滑的TL-FSCL过渡区域。在这项工作中,我们首次为商用分配器阴极构建了基于物理的非均匀发射模型。该发射模型是通过结合通过电子背散射衍射(EBSD)获得的阴极表面晶粒取向和来自密度泛函理论(DFT)计算的面取向特定的功函数值获得的。该模型可以构建阴极表面的二维发射电流密度图和相应的 J-T 和 J-V 曲线。预测的发射曲线与实验结果非常吻合,不仅在 TL 和 FSCL 区域,而且在 TL-FSCL 过渡区域也是如此。该模型提供了一种从商用阴极微结构预测热电子发射的方法,并提高了对热电子发射与阴极微结构之间关系的理解,这对真空电子设备的设计大有裨益。
推导了采用负电子亲和力 NEA 金刚石发射极电极的真空热电子能量转换装置 TEC 的空间电荷限制输出电流模式的理论。该理论通过假设电子表现为无碰撞气体并自洽地求解 Vlaslov 方程和泊松方程而发展。讨论了该理论的特殊情况。执行计算以在各种条件下模拟具有氮掺杂金刚石发射极材料的 TEC。结果表明,NEA 材料在输出功率和效率方面优于类似的正电子亲和力材料,因为 NEA 降低了发射极的静电边界条件,从而减轻了负空间电荷效应。© 2009 美国真空学会。DOI:10.1116/1.3125282