1. Aiache Youssef。通过相互作用的量子比特探测器进行温度量子传感 2. Aimet Stefan。在量子多体领域实验探测兰道尔原理 3. Barros Nicolas。学习欠阻尼存储器的有效擦除协议 4. Benali Mohamed。腔体中黑洞投射的光轨迹和热阴影 5. Bertin-Johannet Bruno。通过能量过滤接触增加热载流子太阳能电池的提取功率 6. Bossard Elisa。容错无测量位翻转量子存储器的热力学分析 7. Cerisola Federico。由于量子寿命展宽导致的额外擦除成本 8. Chang Derek。多时间量子过程中的信息结构 9. Chowdhury Farhan Tanvir。实现耗散自旋动力学数字量子模拟的挑战 10. Chrirou Chaimae。势垒使量子热电材料具有近乎理想的效率
于2021年3月3日收到,于2021年3月6日接受,2021年3月30日发表于2021年5月4日出版,跨标记摘要受到最近成功实验性合成的Janus结构的启发,我们系统地研究了Electric and tocials in 2xy in 2xy and x,x/y y = y a Janus Monolayers的电子,光学和电子运输特性(x/y 理论。单层2Xy在室温下动态稳定。在平衡时,IN2STE和IN2SETE都是直接的半导体,而In2SSE表现出间接的半导体行为。菌株显着改变In2Xy的电子结构及其光催化活性。此外,由于施加的应变,可以找到间接区域间隙转变。电场对In2Xy光学性质的影响可以忽略不计。同时,Janus In2xy单层的光吸光度强度通过压缩应变大大增加。此外,In2Xy单层具有非常低的晶格热导率,从而产生了较高的优点ZT,这使它们成为了室温热电材料的潜在候选者。
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,
摘要:由于其在电子,可穿戴技术和航空航天行业中的应用,对高效和轻量级热材料的需求飙升。传统材料包含重量,稀有和/或有毒元素,使其对未来不可持续。这项工作提出了MGB 4的研究,MGB 4尚未研究为热电材料。我们使用先进的计算化学技术,结合了电子结构计算,晶格动力学和完全缺陷化学分析,以预测理论P-TYPE和N型系统中的一系列载体浓度和温度。研究表明,在高温条件下,P-型MGB 4可与先前发现的基于MG的热电学相媲美,ZT在1200 K时为0.47。我们还表明,将BA合金高达10%是提高热电性能的可能途径,因为它增加了ZT至0.66。■引入多达50%的能源以热的形式浪费,其中大多数来自燃烧等工业过程。1
2023 年的展会将作为一项混合活动举办,包含 4 个部分:能源材料(改进的金属离子电池材料:基于金属离子的电池的先进材料、电化学方法和新的表征方法;固体氧化物燃料电池的材料、合成、烧结和表征方法;用于能量收集的新型压电和热电材料;用于热能存储的新型材料);关键原材料(用于极端条件下可持续替代关键原材料的新材料和工艺;用于能源和生物医学应用的新型金属、陶瓷、复合材料和混合材料的增材制造;先进材料的循环性、其再利用和重新设计的新工艺)和环境保护新材料(用于工业废水净化的材料;用于 CO 2 吸附的材料;用于传感器和先进检测的新材料)。材料建模与仿真(用于储能的材料的原子建模;用于生物医学应用的材料的原子建模;过程建模)。我们继续鼓励年轻研究人员的参与。他们的许多有趣贡献都包含在青年科学家奖竞赛中。
1。使用溶剂提取和研究影响Crystallite size-https://iopscience.org/article/10.10.1088/2053-1591/abc2df 2。大规模P-Type的制造75%SB2TE3-25%BI2TE3热雾化和热等速度按下热电学材料和热等静态按下 - https://doi.org/10.1016/j.materresbull.2020.1020.110924 3.MOS2和N之间的协同作用,S-掺杂的石墨烯氧化石墨烯支持的钯纳米颗粒用于氢进化反应-https://doi.org/10.1016/j.matchemphys.2020.2020.123106 4。M@Pd(M = Ni,Co,Cu)的电催化研究支持N,S掺杂的S掺杂的氧化石墨烯对氢和氧气进化反应 - https://doi.org/10.1002/slct.202002200 5。分子印迹的聚苯胺分子受体基于分子的化学传感器,用于三聚氰胺 - https://doi.org/10.1002/jmr.2836 6。使用分子印刷的多丙二醇 - 氧酸作为分子识别元件 - https://doi.org/10.4028/www.scientific.scientific.net/nhc.29.61 7。共晶复合材料(BI,SB)2TE3/TE热电材料的机械和热电特性
自 2016 年起,担任 UOS 材料和设备表征代表。自 2001 年起,担任 UOS X 射线衍射和 X 射线反射率实验室负责人。从事微电子应用材料领域的研究。研究领域:微电子用氧化物和硫族化物材料、原子层沉积和 MOCVD 沉积、相变存储器、微电子机械系统 (MEMS)、热电材料、拓扑绝缘体。COST 行动 MP1402 HERALD(连接欧洲 ALD 研究)副协调员、LAB4MEMSII 项目(ENIAC 呼叫 2014)副协调员,参与不同的 H2020 和 FP7 项目。欧洲项目 Chemaph(FP7)协调员,负责 PRIN 项目的 CNR。意大利和法国双边项目的协调员,由法国-意大利大学支持。在与 Micron 和 STMicroelectronics 的商业合同竞争中,负责与存储设备和 MEMS 相关的不同活动。拥有美国专利。参与国际项目 VAMAS,旨在实现 X 射线反射率测量的标准化。参与计量项目:IND07,薄膜制造计量,欧洲计量研究计划 (EMRP) 联合研究项目,呼吁 2010 工业 (IND),
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料
材料的低导热率是其潜在应用在高性能热电设备中的关键基本参数。在室温下实验可获得今元(GE 1 -x sn x)半导体薄膜的纯度低电导率。在宽松的GE 1 -x Sn X二进制合金中,导热率随着SN浓度的增加而降低,这主要是通过合金通过合金增加原子之间的原子间距离来解释。在宽松的GE 1 -x sn X中,从58 w m -1 k -1中明显降低了20次,从58 w m -1 k -1降低到≈2.5w m -1 k -1,观察到sn含量最高为9%。该热导率仅比最先进的热电材料(胞晶硒酸硒酸盐)高2倍。ge 1-x sn x是一种无毒的组IV型半导体材料,它是使用半导体行业标准表育观生长技术的标准硅晶片上的外延生长的。因此,它可以导致期待已久的高性能低成本热电产生器,用于在人类日常生活中的室温应用,并将为CO 2发射和绿色的电力发电中的全球效果做出重大贡献。
自供电可穿戴电子设备需要热电材料同时具有高的无量纲性能系数(zT)和良好的灵活性,以便将人体排出的热量转化为电能。Ag2(S,Se)基半导体材料可以很好地满足这些要求,因此,它们最近在热电界引起了极大的关注。Ag2(S,Se)结晶为正交结构或单斜结构,具体取决于具体的S/Se原子比,但其晶体结构与机械/热电性能之间的关系迄今为止仍不清楚。在本研究中,制备了一系列Ag2Se1‐xSx(x=0、0.1、0.2、0.3、0.4 和 0.45)样品,并系统地研究了它们的机械和热电性能对晶体结构的依赖性。 Ag 2 Se 1-x S x 体系中 x = 0 : 3 被发现是正交结构和单斜结构之间的过渡边界。力学性能测量表明,正交 Ag 2 Se 1-x S x 样品易碎,而单斜 Ag 2 Se 1-x S x 样品延展性好且柔韧。此外,在相当的载流子浓度下,正交 Ag 2 Se 1-x S x 样品比单斜样品表现出更好的电传输性能和更高的 zT,这很可能是由于它们的电子-声子相互作用较弱。这项研究为柔性无机 TE 材料的进一步发展提供了启示。