摘要 简介 激光间质热疗 (LITT;也称为立体定向激光消融或 SLA) 是一种微创治疗方式,最近在治疗恶性原发性和转移性脑肿瘤以及放射性坏死方面引起了广泛关注,并且最近有报道其治疗脊柱转移的研究。 方法 在这里,我们简要回顾了 LITT 的各种当代用途及其报告的结果。 结果 从历史上看,LITT 的主要适应症是治疗复发性胶质母细胞瘤 (GBM)。然而,适应症不断扩大,现在包括不同等级的神经胶质瘤、脑转移 (BM)、放射性坏死 (RN)、其他类型的脑肿瘤以及脊柱转移。LITT 正在成为一种安全、可靠、微创的临床方法,特别是对于深部、局灶性恶性脑肿瘤和放射性坏死。LITT 在治疗其他类型脑肿瘤和脊柱肿瘤中的作用似乎正在少数中心发展。虽然该技术似乎安全且应用越来越广泛,但前瞻性临床试验很少,而且大多数已发表的研究在同一份报告中结合了不同的病理。结论需要精心设计的前瞻性试验来牢固确立 LITT 在治疗脑部和脊柱病变中的作用。
摘要:全球癌症患者数量正在迅速增加。在人类死亡的主要原因中,癌症可视为对人类的主要威胁之一。尽管目前许多新的癌症治疗方法(如化疗、放疗和手术方法)正在开发并用于测试目的,但结果显示其效率有限且毒性高,即使它们有可能在此过程中损害癌细胞。相反,磁热疗是一种源自磁性纳米材料的使用领域,由于其磁性和其他特性,磁性纳米材料在许多临床试验中被用作癌症治疗的解决方案之一。磁性纳米材料可以通过施加交变磁场来提高位于肿瘤组织中的纳米颗粒的温度。一种非常简单、廉价且环保的方法是通过在静电纺丝过程中向纺丝溶液中添加磁性添加剂来制造各种类型的功能纳米结构,这可以克服这种具有挑战性的治疗过程的局限性。在这里,我们回顾了最近开发的电纺磁性纳米纤维垫和磁性纳米材料,它们支持磁热疗、靶向药物输送、诊断和治疗工具以及癌症治疗技术。
简单总结:尽管早期研究对胶质母细胞瘤的疗效令人鼓舞,但目前热疗尚未应用于脑癌的治疗。由于关键器官的存在及其对高温的额外敏感性,聚焦颅内加热是一项具有挑战性的任务。在本文中,我们引入了一个新概念来设计 UWB 施加器,以便在大型脑肿瘤中实现足够的温度,同时保护健康组织免于过热。我们引入了一种快速电场近似方案,可以快速探索大量阵列配置,以确定头部周围最优化的天线布置,以满足临床热疗的多个目标和要求。所提出的解决方案设法实现了成功治疗所必需的肿瘤覆盖和热点抑制水平。结果表明,该方法足够准确,可以为给定的肿瘤形状和位置提供有关最合适天线布置的定性指示,同时产生比环形天线阵列更高的目标温度。
摘要 血脑屏障和血肿瘤屏障是高度专业化的结构,负责严格调节分子向中枢神经系统的运输。正常情况下,血脑屏障 (BBB) 的相对不通透性保护大脑免受循环毒素的侵害,并有助于形成对最佳神经元功能所必需的大脑微环境。然而,在肿瘤和其他中枢神经系统疾病的背景下,BBB 和最近受到重视的血肿瘤屏障 (BTB) 是阻碍有效药物输送的屏障。克服这两种障碍以优化中枢神经系统疾病的治疗仍然是深入科学研究的主题。虽然已经开发出许多新技术来克服这些障碍,但可以追溯到 19 世纪 90 年代的热疗法至少从 20 世纪 80 年代初就已知会破坏 BBB。最近,由于多项技术进步,激光间质热疗 (LITT)(一种靶向热疗方法)已广泛用于消融脑肿瘤的手术技术。此外,越来越多的证据表明,激光消融治疗后也可能增加局部 BBB/BTB 通透性。我们在此回顾了 BBB 和 BTB 的结构和功能以及热损伤(包括 LITT)对屏障功能的影响。
摘要:纳米医学的发展涉及复杂的纳米材料研究,包括磁性纳米材料及其在磁热疗中的应用。选择最佳治疗策略既耗时又昂贵,而且不可预测,而且效果并不一致。提供个性化治疗以获得最大效率和最小副作用非常重要。因此,基于人工智能 (AI) 的算法提供了克服这些关键问题的机会。在本文中,我们简要概述了基于人工智能的方法(特别是机器学习 (ML) 技术)与磁热疗相结合的意义。我们考虑了 Scopus 和 Web of Science 核心合集数据库中的最新出版物、报告、协议和评论论文,并考虑了 PRISMA-S 评论方法,以将磁性纳米载体应用于磁热疗。还对算法性能进行了比较,比较了算法的类型和准确性、数据可用性(考虑到其数量、类型和质量)。文献显示,人工智能支持这些研究,从纳米载体的物理化学评估、药物开发和释放、耐药性预测、剂量优化、药物选择组合、药代动力学特征表征和结果预测到热量产生估计。本文回顾的论文清楚地表明,基于人工智能的解决方案可以被视为药物输送的有效支持工具,包括体外和体内纳米载体的优化和行为以及输送过程。此外,还指出了未来研究的方向,包括最佳实验的预测和数据管理计划。
乳腺癌 (BC) 是全球女性最常见的癌症之一;然而,BC,尤其是三阴性乳腺癌 (TNBC) 的成功治疗仍然是一项重大的临床挑战。最近,光热疗法 (PTT) 已被证明是一种可以克服化疗或手术缺点的新疗法,该疗法涉及在辐射下产生热量以实现 BC 的光热消融,具有微创性和出色的时空选择性。值得注意的是,当将 PTT 与化疗和/或光动力疗法相结合时,可以在原发性和转移性 BC 肿瘤中实现增强的协同治疗效果。因此,本综述讨论了基于纳米技术的光热疗法在治疗 BC 及其转移方面的最新发展,以提供未来 BC 治疗的潜在策略。
不在临床风险组中的5-11岁儿童的绿皮书:‘应提供至少12周剂量之间的12周的间隔。该单一折扣计划适用于5至11岁的人,包括2022年8月底之前五岁的人。儿童不符合此一次一次性计划的资格,因为他们在2022年9月1日或之后才有资格只有在具有额外资格标准的情况下,例如在临床风险组中或与免疫支持的人同住,才有资格接受疫苗接种。JCVI不断审查英国的COVID-19-19疫苗接种标准,包括向5-11岁儿童的报价,其建议的任何更新将在适当的时候宣布。
摘要:尽管近年来诊断和治疗方案取得了进展,但癌症仍然是对健康的最严重威胁之一。已经确定了几种抗癌疗法,但需要进一步研究以提供更多对癌症安全有效的治疗方案。高温疗法 (HT) 是一种很有前途的癌症治疗策略,因为它安全且具有成本效益。本综述总结了关于 HT 抗癌作用及其详细机制的研究。此外,由于 HT 可能引发保护性事件,例如热休克蛋白 (HSP) 增加,因此还回顾了可以有效克服 HT 局限性的抗癌药物或天然产物联合疗法。在纳入的 115 份报告中,与细胞凋亡、细胞周期、活性氧、线粒体膜电位、DNA 损伤、转录因子和 HSP 相关的机制被认为是重要的。本综述表明 HT 是一种有效的细胞凋亡诱导剂。此外,可以使用与抗癌药物或天然产物的联合疗法来克服 HT 的局限性。因此,该类药物与HT的适当组合将发挥最大治疗癌症的效果。
将等离子体纳米结构与治疗药物以可控的方式结合到可生物降解的聚合物纳米粒子 (NPs) 中,对于纳米医学的不同应用很有意义。通过结合等离子体钯纳米片 (NSs) 的原位形成和封装药物的适当离子性质,可以设计出先进的混合纳米材料。这项研究提出了一种通过 Pickering 双乳液合成混合纳米结构的新方法。当 Pd 前体通过气相程序原位还原时,具有独特近红外 (NIR) 光学特性的各向异性钯 (Pd) NSs 可以组装在 < 200 nm NPs 的聚乳酸-共-乙醇酸基质内。混合纳米材料对外部 NIR 光刺激作出反应。当与疏水性药物结合封装时,在单一阶段中以前所未有的精度组装具有总负载选择性的等离子体纳米结构,为新型治疗诊断学提供了新的机遇,特别是在需要触发药物输送和光热疗法时。
这是以下文章的同行评审、已接受作者手稿:Kucharczyk, K., Kaczmarek, K., Józefczak, A., Slalchcinski, M., Mackiewicz, A., & Dams- Kozłowska, H. (2021)。通过应用靶向丝/氧化铁复合球对癌细胞进行热疗。材料科学与工程:C , 120 , [111654]。https://doi.org/10.1016/j.msec.2020.111654
