• 关键材料选择标准包括比刚度、比强度、耐腐蚀性、抗断裂和疲劳性、4 K ≤ T ≤ 675 K 温度范围内的热膨胀系数和热导率,以及易于制造。
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
摘要 电子组件使用各种具有不同机械和热性能的聚合物材料来在恶劣的使用环境中提供保护。然而,机械性能的变化(例如热膨胀系数和弹性模量)会影响材料的选择过程,从而对电子产品的可靠性产生长期影响。通常,主要的可靠性问题是焊点疲劳,这是电子元件中大量故障的原因。因此,在预测可靠性时,有必要了解聚合物封装(涂层、灌封和底部填充)对焊点的影响。研究表明,当焊料中存在拉伸应力时,由于聚合物封装的热膨胀,疲劳寿命会大大缩短。拉伸应力的加入使焊点处于周期性多轴应力状态,这比传统的周期性剪切载荷更具破坏性。为了了解拉伸应力分量对微电子焊点疲劳寿命缩短的影响,有必要将其分离出来。因此,我们构建了一个独特的样本,以使无铅焊点经受波动的拉伸应力条件。本文介绍了热机械拉伸疲劳样本的构造和验证。热循环范围与灌封膨胀特性相匹配,以改变施加在焊点上的拉伸应力的大小。焊点几何形状的设计具有与 BGA 和 QFN 焊点相关的比例因子,同时保持简化的应力状态。进行了 FEA 建模,以观察焊点在热膨胀过程中的应力-应变行为,以适应各种灌封材料的特性。焊点中轴向应力的大小取决于热膨胀系数和模量以及热循环的峰值温度。样本热循环的结果有助于将由于灌封材料的热膨胀而导致焊点经历的拉伸应力的大小与各种膨胀特性相关联,并为封装电子封装中焊点的低周疲劳寿命提供了新的见解。简介大量电子元件故障归因于焊点疲劳故障。航空航天、汽车、工业和消费应用中的许多电子元件都在波动的温度下运行,这使焊点受到热机械疲劳 (TMF) 的影响。电子组件中的焊料疲劳是温度波动和元件与印刷电路板 (PBC) 之间热膨胀系数 (CTE) 不匹配的结果。在温度变化过程中,PCB 和元器件 CTE 的差异会引起材料膨胀差异,从而使焊点承受剪切载荷。为了减少芯片级封装 (CSP) 中焊点所承受的剪切应变,人们使用了各种底部填充材料来限制焊点的变形。芯片级焊料互连(例如倒装芯片封装中的焊料)尤其受益于底部填充材料,因为它可以重新分配热膨胀应力,从而限制施加在焊料凸点上的应变。除了限制剪切应变之外,底部填充材料的膨胀还会导致球栅阵列 (BGA) 焊点产生较大的法向应变。Kwak 等人使用光学显微镜的 2D DIC 技术测量了热循环下焊点的应变 [1]。他们发现,CTE 为 30 ppm/ºC 且玻璃化转变温度 (T g ) 为 80ºC 的底部填充材料在 100ºC 的温度下可以产生 6000 µƐ 的平均法向应变。这些高法向应变并不像 BGA 封装中的剪切应变那样表现出与中性点距离相同的依赖性。法向应变的大小与 CTE、弹性模量 (E)、封装尺寸和温度有着复杂的依赖关系。法向应变的增加使焊点受到剪切应变和轴向应变的组合影响,这反过来又使焊点在温度波动的条件下受到非比例循环载荷。
耐电弧性 IPC-650 2.5.1 秒 >180 秒 >180 弯曲强度 (MD) IPC-650 2.4.4 psi >23,000 N/mm 2 >159 弯曲强度 (CD) IPC-650 2.4.4 psi >19,000 N/mm 2 >131 剥离强度 (1 盎司 ED) IPC-650 2.4.8 磅/英寸 12 N/mm 2.1 热导率 ASTM F 433 W/M*K 0.19 W/M*K 0.19 热膨胀系数 (XY 轴) ASTM D 3386 (TMA) ppm/ ° C 21-23 ppm/ ° C 21-23 热膨胀系数 (Z 轴) ASTM D 3386 (TMA) ppm/ ° C 215 ppm/ ° C 215 可燃性等级UL 94 V-0 V-0
摘要:在本文中,我们通过使用FEM(有限元方法)计算了裸底物和芯片附着的底物的经纱,并比较并分析了芯片附件对翘曲的影响。另外,分析了底物的层厚度对还原经经的影响,并通过Taguchi方法的信号效率比分析了层厚度的条件。根据分析结果,固定芯片时,底物中经纱的方向可能会发生变化。此外,随着包装顶部和底部之间CTE(热膨胀系数)的差异(热膨胀系数)的差异也会降低,并且在加载芯片后包装的刚度会增加。此外,根据对未连接芯片的底物的影响分析,为了减少芯片,为了减少经轴,电路层CU1和CU4的内层首先受到控制,然后集中在焊料底部的焊料厚度上,以及在Cu1和Cu2之间的预钻层的厚度。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。