近年来,深入的闭环钻孔热交换器系统已引起了地热能以有效加热建筑物,例如将它们集成到地区供暖系统中。在这项工作中,基于OpenGeosys软件,建立了最近在中国西安市实施的飞行员Deep U型钻孔热交换器(DUBHE)系统的3D数值模型。该模型通过从试点项目中监视数据的2个月进行了充分的验证。然后,进一步耦合了热力学热泵模型,以研究Dubhe对热泵的非设计性能的瞬时热响应。随后,模拟了区域供暖系统中的动态操作,以评估Dubhe-couptle热泵系统的灵活性。首次通过热泵进行热负荷分布的机理以及在地下Dubhe和热泵之间阐明了操作过程中的热负荷重新分布的行为。发现,整个系统的最大可持续加热能力在120天操作中约为780 kW,而工作流体R410A和所需的进料流量温度为65℃,在热泵中为65℃。随着运行时间的增加,由于热泵性能的降低,在120天内分布到DUBHE的热负荷在120天内降低了21%以上。R600热泵在四种不同的工作流体中具有最佳性能和效率,但与R410A热泵相比,DUBHE的流出温度降低了3.4℃。在Dubhe的循环流体温度方面,Dubhe的这种过度提取的性能对其可持续性运行构成了挑战。在整合到地区供暖系统中的两种操作模式中,地下杜布(Dubhe)可以为地区供暖系统提供总热力的70%。平均年度COP高0.2,而低饲料流动温度低于地区供暖系统,并且更频繁地关闭操作,在将Dubhe耦合的热泵系统集成到区域加热系统中时显示出明显的灵活性。
➢ 建筑朝向东西,以便最大限度地利用日光。 ➢ 安装了双层玻璃,以便最大限度地利用日光。玻璃的 SHGC 为 0.35。 ➢ 穿孔铝板安装在双层玻璃约 3 英尺处,以减少热负荷。 ➢ 露台铺有 SRI 78 的中国马赛克瓷砖。 ➢ 该位置位于复合气候区。 ➢ 22-23 财年的能源消耗为 9839208.3 kWh。
Liebert DS 提供最大的能源效率,同时不会损害敏感电子设备所需的准确性和可靠性。所有能源效率的增强都旨在减少关键部件的运行时间并增加平均故障间隔时间。这是通过利用替代冷却源来实现的,即在空调空间的热负荷较低时最大限度地减少压缩机的运行。通过使用高效组件(例如先进的数码涡旋和 4 步半封闭压缩机),还可以节省能源。
置换冷空气以低速靠近地面流动。由于空气流动速度低,地板上会形成一“池”冷空气。冷空气由集成在服务器机架中的风扇吸入,吸入程度取决于热负荷,然后以热空气的形式向上排出。由于防止冷热空气混合,置换装置可以在 30°C 下吸入循环空气,而不是像以前那样在 25°C 下吸入。这种更高的温度水平增加了自然冷却的运行时间。
专为节能而设计 Liebert DS 提供最大的能源效率,同时不会损害敏感电子设备所需的准确性和可靠性。所有能源效率增强功能都旨在减少关键部件的运行时间并增加平均故障间隔时间。这是通过利用替代冷却源来实现的,即在空调空间的热负荷较低时将压缩机运行降至最低。通过使用高效组件(例如先进的数码涡旋和 4 步半封闭压缩机),还可以节省能源。
15. 补充说明由船舶结构委员会赞助。由其成员机构共同资助。16. 摘要先进复合材料制造技术的发展为聚合物基质复合材料在大型承重结构(包括船舶和码头和桥梁等土木工程结构)中的经济高效应用提供了清晰的前景。然而,聚合物基质复合材料在火灾引起的热负荷下会严重降解(损坏)。本报告描述了经过火灾降解的聚合物基质玻璃增强复合材料的压缩失效的实验和理论研究结果。我们的研究涉及单层和芯复合材料。实验研究是在大约 1 平方米的复合板上进行的。这些研究记录了面板在受到热(即火灾)负荷和平面内和平面外机械负荷时的结构坍塌。与分析建模同时进行的面板变形和坍塌的详细有限元模拟与实验观察结果非常吻合。在实验和分析的背景下,讨论了开发结构防火定量方法的方法。最后,提出了单板和芯板的简单设计方法,并讨论了实验结果和热边界条件。 17. 关键词 复合材料、热负荷、聚合物基复合材料 18. 分发声明 分发可通过以下方式向公众提供: 国家技术信息服务 美国商务部 Springfield, VA 22151 电话 (703) 487-4650
专为节能而设计 Liebert DS 提供最大的能源效率,同时不会损害敏感电子设备所需的准确性和可靠性。所有能源效率增强功能都旨在减少关键组件的运行时间并增加平均故障间隔时间。这是通过利用替代冷却源来实现的,即在空调空间的热负荷较低时最大限度地减少压缩机的运行。通过使用高效组件(例如先进的数码涡旋和 4 步半封闭压缩机),还可以节省能源。
专为节能而设计 Liebert DS 提供最大的能源效率,同时不会损害敏感电子设备所需的准确性和可靠性。所有能源效率增强功能都旨在减少关键部件的运行时间并增加平均故障间隔时间。这是通过利用替代冷却源来实现的,即在空调空间的热负荷较低时将压缩机运行降至最低。通过使用高效组件(例如先进的数码涡旋和 4 步半封闭压缩机),还可以节省能源。
专为节能而设计 Liebert DS 提供最大的能源效率,同时不会损害敏感电子设备所需的准确性和可靠性。所有能源效率增强功能都旨在减少关键部件的运行时间并增加平均故障间隔时间。这是通过利用替代冷却源来实现的,即在空调空间的热负荷较低时将压缩机运行降至最低。通过使用高效组件(例如先进的数码涡旋和 4 步半封闭压缩机),还可以节省能源。
第 2 章背景和文献综述 7 2.1 背光单元配置 7 2.1.1 侧光式背光单元 8 2.1.1 直下式背光单元 8 2.2 户外数字显示器的热管理 10 2.2.1 主动和半主动冷却 11 2.2.2 开环和闭环冷却 12 第 3 章实验和模拟设置 16 3.1 模拟数据收集实验 16 3.1.1 55 英寸户外数字显示器的户外测试 16 3.1.2 防暴玻璃的真太阳测试 18 3.2 初始模拟设置和设置 18 第 4 章55 英寸户外数字显示器的模拟结果 26 4.1 3,500 尼特亮度结果 26 4.1.1危险户外环境 26 4.1.2 与户外测试的比较 29 4.2 6,000 尼特亮度结果 31 4.2.1 危险户外环境 32 4.2.2 与户外测试的比较 32 4.3 网格大小研究 35 4.4 网格技术效果 39 4.5 模拟包比较 40 第 5 章使用比尔定律和间隙调整效应对 LCD 进行模拟改进 44 5.1 防暴玻璃辐射特性测试 44 5.2 防暴玻璃中的热负荷重新分配 46 5.2 热负荷重新分配和改进的模拟结果 49