钯似乎表现出几种可应用于微电子封装的特性。Straschil 等人和 Kudrak 等人 1,2 声称钯镀层提供了良好的成核位置,从而降低了孔隙率,同时提高了附着力。通用电气公司进行的另一项研究 3 报告称,包括钯在内的几种金属在高温下是一种有效的热障。因此,钯镀层应能促进典型的焊料密封或焊料附着应用的良好结合和密封特性。此外,钯与已知的有效热障如镍钴 (Ni-Co) 4 相结合,理论上应能减少镍扩散到表面的量并产生无空洞的焊料界面;也就是说,提高可焊性和可靠性。已开展了一个项目来调查这些说法。本研究重点关注酸性钯镀液和较厚镀层的开发和潜在应用
钯似乎表现出几种可应用于微电子封装的特性。Straschil 等人和 Kudrak 等人1,2 声称钯镀层提供了良好的成核位置,从而降低了孔隙率,同时增强了附着力。通用电气进行的另一项研究 3 报告称,包括钯在内的几种金属被发现在高温下是一种有效的热障。因此,钯镀层应能促进典型的焊料密封或焊料附着应用的良好粘合和密封特性。此外,钯与已知有效的热障(如镍钴 (Ni-Co))4 相结合,理论上应能减少镍扩散到表面的量并产生无空洞的焊料界面;即提高可焊性和可靠性。开展了一个项目来调查这些说法。这项研究的重点是使用酸性钯冲击浴和更厚的
Fralock 的无胶层压技术 (ALT) 多区域加热器比市场上任何同类产品都更高效、更薄、更轻、更耐用,并提供许多选择,包括热障和全聚酰亚胺组件内的导热层。其他使用粘合剂将微量元素粘合到绝缘材料上的多区域加热器使它们易碎、易受高温影响,并且容易出现气穴,从而导致开裂、进一步分层和故障。使用常用粘合剂(如 PTFE)制造的设计也可能容易出现故障,因为电路“游动”会导致走线在高温下彼此移动得太近并形成短路或“热点”。相比之下,Fralock 全聚酰亚胺加热器可以折叠、包裹甚至揉皱而不会影响性能。
Fralock 的无胶层压技术 (ALT) 多区域加热器比市场上任何同类产品都更高效、更薄、更轻、更耐用,并提供许多选择,包括热障和全聚酰亚胺组件内的导热层。其他使用粘合剂将微量元素粘合到绝缘材料上的多区域加热器使它们易碎、易受高温影响,并且容易出现气穴,从而导致开裂、进一步分层和故障。使用常用粘合剂(如 PTFE)制造的设计也可能容易出现故障,因为电路“游动”时,高温下的走线彼此移动得太近,从而形成短路或“热点”。相比之下,Fralock 全聚酰亚胺加热器可以折叠、包裹甚至揉皱,而不会影响性能。
不锈钢、钛和钴铬合金等金属合金具有出色的强度、摩擦学特性和生物相容性,是生物植入物的首选材料。然而,长期植入金属合金可能会因离子渗出而导致炎症、肿胀和瘙痒。为了解决这个问题,聚合物越来越多地用于骨科应用,取代骨固定板、螺钉和支架等金属部件,并最大限度地减少全髋关节和膝关节置换术中的金属对金属接触。陶瓷以其硬度、热障、耐磨和耐腐蚀性而闻名,在电化学、燃料和生物医学行业中得到广泛应用。本综述深入研究了各种生物相容性材料,这些材料经过精心设计,可以与身体无缝结合,减少炎症、毒性或免疫反应等不良反应。此外,本综述还探讨了包括金属、聚合物和陶瓷在内的各种生物材料在植入应用中的潜力。虽然金属生物材料仍然不可或缺,但聚合物和陶瓷有望成为替代方案。然而,表面改性金属材料具有混合效果,结合了不同成分的优势。生物医学植入材料的未来在于先进的制造技术和个性化设计,从而为复杂的医疗需求提供量身定制的解决方案。
迄今为止,尚无一种普遍接受的或标准的 CUI 涂层测试方法。当前的测试方法在可靠性和复杂性方面存在重大缺陷,并且成本非常高昂。在某些情况下,测试需要 6 个月以上才能获得结果。建议的测试方法简洁、快速,与其他方法不同,它为热应力下的涂层提供了高度的可重复性。加速循环应力测试能够测试涂层在绝缘状态下从环境温度到 700ºF (350ºC) 的间歇性浸泡。市场上的大多数 CUI 环氧涂层都是某种形式的改性酚醛树脂。有些被笼统地归类为“混合或改性环氧”涂层,温度限制为 400-450ºF (200- 225ºC)。真正的混合物可以基于共聚物 IPN 粘合剂系统,也可以称为基于热障颜料的复合材料,其热性能可高达 700ºF (350ºC)。测试协议包含 4 项关键测试,用于确定环氧基 CUI 涂层的使用寿命。一个测试设备/室将使用模拟 CUI 环境结合以下主要测试。
这些材料的厚度[13,14]、孔隙率[15]、多晶性[16]和生长形貌都会影响关键的设计参数,如质量密度(ρ)和热导率(κ)。例如,质量密度是爆炸材料爆轰性能的主要参数,因为它与由此产生的传播速度成正比。[17,18]另一方面,热导率可以为药物成分的无定形稳定性提供关键见解,这最终决定了它们的生物利用度。[3,19,20]对于薄膜热障,质量密度和热导率都起着重要作用,因为它们通常是被动的并受到瞬态热载荷。 [8] 考虑到工程表面的状况、[12] 微观缺陷、[21] 通往非晶态的新途径[20] 和新型沉积技术[22] 预计将共同作用以控制有机薄膜的微观结构,需要对热物理性质进行局部测量,以指导其合成和生长。然而,对有机薄膜而言,质量密度的局部测量是一个巨大的挑战。例如,掠入射 X 射线反射、光谱椭圆偏振术和横截面扫描电子显微镜要么需要超光滑表面[23]、有机物透明的波长[24],要么需要可能损坏熔点低的样品的离子暴露。[25,26] 另一方面,重量法测量质量和体积会得出整个样本的平均密度,而没有关于微观结构的信息。显然,需要一种能够非破坏性地探测有机薄膜局部质量密度变化的测量技术。频域热反射 (FDTR) 是一种成熟的泵探测测量技术,可用于测定块体和薄膜材料的热性质,探测尺寸与激光光斑尺寸相当(通常约为 10 μ m)。[27–29] 使用 FDTR,可以定期提取材料的热导率和体积热容量 (ρcp)。然后可以使用测得的体积热容量和体积比热容 (cp) 的假设来确定质量密度。为了测量有机薄膜的质量密度,
经验证,该绝缘材料的属性符合 ICC 700-2008 第 703.2.1.1.1(c) 节中作为不透气绝缘材料的规定。请注意,这些领域的合规性决定权在于本报告的用户。用户将被告知特定于项目的规定可能取决于是否满足特定条件,而这些条件的验证超出了本报告的范围。这些规范或标准通常会提供补充信息作为指导。3.2 表面燃烧特性:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料的最大厚度为 5.8 英寸(147 毫米),标称密度为 0.5 磅/立方英尺(8 千克/立方米),按照 ASTM E84(UL 723)进行测试时,火焰蔓延指数为 25 或更低,烟雾发展指数为 450 或更低。如果安装过程与建筑物内部之间通过规范规定的 15 分钟热障隔开,则没有厚度限制。3.3 热阻:UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料在平均温度为 75°F (24°C) 时的热阻 R 值如表 1 所示。3.4 透气性:根据 2015 和 2012 IRC 第 R806.5 节(2009 IRC 第 R806.4 节)和 2015 IBC 第 1203.3 节,根据 ASTM E283 进行的测试,UTC 7040-0.5 和 7041-0.5 ICC 绝缘材料厚度至少为 3.5 英寸(89 毫米),被视为不透气的绝缘材料。 3.5 UTC 7030-FS1 膨胀型涂料:UTC 7030-FS1 膨胀型涂料由 Urethane Technology Company, Inc. 生产,是一种水基单组分涂料,以 5 加仑(19L)桶和 55 加仑(208L)圆桶包装。如果将涂料存放在工厂密封的容器中,温度在 60°F (15.6°C) 和 80°F (26.7°C) 之间,则该涂料的保质期为 12 个月。3.6 DC 315 涂料:DC 315 涂料由 International Fireproof Technology Inc./Paint to Protect Inc. (ESR-3702) 生产,是一种单组分水基液体应用膨胀型涂料。涂料以 5 加仑(19 L)桶和 55 加仑(208 L)桶装供应,在 50°F(10°C)至 80°F(27°C)温度下储存在工厂密封的容器中时,保质期为 24 个月。4.0 安装