摘要 — 电子产品的不断小型化与工业和汽车电子产品的严格可靠性要求相结合,是新兴封装技术面临的一大挑战。一方面是增加对环境载荷下损坏的了解。因此,在温度循环测试之后,对组装在印刷电路板 (PCB) 上的晶圆级芯片级封装的焊点进行了分析。在所研究的封装中,有限数量的接头没有与 PCB 铜垫形成适当的机械连接。虽然这并非有意为之,但这些情况会导致这些接头在最初几个热循环内脱落。然而,这种状况提供了一个独特的机会来比较热机械载荷(连接接头)和纯热载荷(脱落接头)后的焊点微观结构,它们直接位于彼此相邻的位置。结果表明,微结构老化效应可以直接与接头中载荷增加的区域联系起来。对于分离的焊点来说尤其如此,它们几乎可以保留其初始微观结构,直到受到热分布高温部分的影响。通过有限元模拟,如果孤立的焊球从板上脱落,可以进一步量化相邻焊点增加的负载。在介绍的一个案例中,角焊点的寿命仅减少了 85%。
电子学是当代科学与工程中发展最快的学科之一。由于对微型化和集成化的不断追求,大多数电子元件都是在所谓的微型尺度上设计和制造的。出于这个原因,专业人士中建立了微电子学这个专业术语。如今,微电子元件是每种工业或家用电子设备不可或缺的一部分。不幸的是,像其他设备一样,微电子元件的使用寿命也是有限的。其可靠性的基本问题之一是连接。在微电子封装[17]中,使用焊接、胶合和键合连接,其中焊点是最重要的[13, 15, 27]。大多数焊点损坏是由于热机械载荷造成的,其直接原因是由于连接材料的热膨胀系数不匹配而产生的应力[17, 35, 40]。据估计,微电子封装中约 65% 的损坏与热机械问题有关 [2, 38]。可靠性被定义为物体在给定环境条件下、在一段规定时间内正常运行的属性。可靠性的数学描述允许在定义的操作条件下评估物体故障的概率。电子封装接头可靠性预测的传统方法之一是基于所谓的双材料界面的理论分析。双材料界面是指两种具有不同热机械性能的材料之间的机械连接。
符合航空航天和国防工业的约束条件。在焊点可靠性研究中,使用有限元分析模拟似乎是一种有前途的解决方案;其结果是维持不断增加的资格测试成本。但是,这种模拟需要焊点所用合金的机械性能。到目前为止,文献中还没有关于机械本构模型、参数或疲劳规律的重要共识。由于这些合金的熔点低,其机械行为很复杂,即使在室温下也能达到可见的粘度域。此外,在这些合金的疲劳分析中不能忽略蠕变疲劳相互作用。因此,很明显,最终应用中的焊点微观结构非常复杂。
3.2.1 方法论 ................................................................................................ 94 3.2.2 实验细节 ................................................................................................ 95 3.2.3 测试载体描述 ........................................................................................ 96 3.2.4 测试载体 1:回流曲线验证的影响 ........................................................ 96 3.2.5 测试载体 2:应变率验证的影响 ............................................................. 98 3.2.6 测试载体 3:CSH 验证的影响 ............................................................. 101 3.2.7 测试载体 4:空洞验证的影响 ............................................................. 104 3.2.8 测试载体 5:ATC 对焊点长期可靠性的影响 ............................................. 106
无铅锡基焊点通常具有单晶粒结构,取向随机,且特性高度各向异性。这些合金通常比铅基焊料更硬,因此在热循环期间会向印刷电路板 (PCB) 传递更多的应力。这可能会导致靠近焊点的 PCB 层压板开裂,从而提高 PCB 的柔韧性,减轻焊点的应变,进而延长焊料疲劳寿命。如果在加速热循环期间发生这种情况,可能会导致高估现场条件下焊点的寿命。在本研究中,使用偏光显微镜研究了连接陶瓷电阻器和 PCB 的 SAC305 焊点的晶粒结构,发现其大多为单晶粒。热循环后,在焊点下的 PCB 中观察到裂纹。这些裂纹很可能是在热循环的早期阶段在焊料损坏之前形成的。为了详细研究这些观察结果,我们开发了一种有限元模型,该模型结合了单晶焊点随温度变化的各向异性热性能和机械性能。该模型能够以合理的精度预测 PCB 和陶瓷电阻焊点中损伤起始的位置。它还表明,即使长度非常小的 PCB 裂纹也可能显著降低焊点中累积的蠕变应变和蠕变功。所提出的模型还能够评估焊料各向异性对陶瓷电阻相邻(相对)焊点损伤演变的影响。
摘要 尽管空洞的存在及其对焊点可靠性的影响一直是人们讨论的话题,但其存在与否以及空洞对焊点可靠性的影响一直存在争议。在本文中,我们重新回顾了以前关于各种空洞类型、其起源及其对焊点热机械性能的影响的研究。我们重点研究由焊膏和合金特性导致的宏观空洞、金属间微空洞和收缩空洞。我们将文献结果与我们自己的实验数据进行比较,并使用疲劳裂纹萌生和扩展理论来支持我们的发现。通过一系列示例,我们表明宏观空洞的大小和位置并不是影响焊点机械和热疲劳寿命的主要因素。事实上,我们观察到,当这些空洞面积符合 IPC-A-610(D 或 F)或 IPC-7095A 标准时,宏观空洞对热循环或跌落冲击性能没有任何显著影响。
摘要 电子组件使用各种具有不同机械和热性能的聚合物材料来在恶劣的使用环境中提供保护。然而,机械性能的变化(例如热膨胀系数和弹性模量)会影响材料的选择过程,从而对电子产品的可靠性产生长期影响。通常,主要的可靠性问题是焊点疲劳,这是电子元件中大量故障的原因。因此,在预测可靠性时,有必要了解聚合物封装(涂层、灌封和底部填充)对焊点的影响。研究表明,当焊料中存在拉伸应力时,由于聚合物封装的热膨胀,疲劳寿命会大大缩短。拉伸应力的加入使焊点处于周期性多轴应力状态,这比传统的周期性剪切载荷更具破坏性。为了了解拉伸应力分量对微电子焊点疲劳寿命缩短的影响,有必要将其分离出来。因此,我们构建了一个独特的样本,以使无铅焊点经受波动的拉伸应力条件。本文介绍了热机械拉伸疲劳样本的构造和验证。热循环范围与灌封膨胀特性相匹配,以改变施加在焊点上的拉伸应力的大小。焊点几何形状的设计具有与 BGA 和 QFN 焊点相关的比例因子,同时保持简化的应力状态。进行了 FEA 建模,以观察焊点在热膨胀过程中的应力-应变行为,以适应各种灌封材料的特性。焊点中轴向应力的大小取决于热膨胀系数和模量以及热循环的峰值温度。样本热循环的结果有助于将由于灌封材料的热膨胀而导致焊点经历的拉伸应力的大小与各种膨胀特性相关联,并为封装电子封装中焊点的低周疲劳寿命提供了新的见解。简介大量电子元件故障归因于焊点疲劳故障。航空航天、汽车、工业和消费应用中的许多电子元件都在波动的温度下运行,这使焊点受到热机械疲劳 (TMF) 的影响。电子组件中的焊料疲劳是温度波动和元件与印刷电路板 (PBC) 之间热膨胀系数 (CTE) 不匹配的结果。在温度变化过程中,PCB 和元器件 CTE 的差异会引起材料膨胀差异,从而使焊点承受剪切载荷。为了减少芯片级封装 (CSP) 中焊点所承受的剪切应变,人们使用了各种底部填充材料来限制焊点的变形。芯片级焊料互连(例如倒装芯片封装中的焊料)尤其受益于底部填充材料,因为它可以重新分配热膨胀应力,从而限制施加在焊料凸点上的应变。除了限制剪切应变之外,底部填充材料的膨胀还会导致球栅阵列 (BGA) 焊点产生较大的法向应变。Kwak 等人使用光学显微镜的 2D DIC 技术测量了热循环下焊点的应变 [1]。他们发现,CTE 为 30 ppm/ºC 且玻璃化转变温度 (T g ) 为 80ºC 的底部填充材料在 100ºC 的温度下可以产生 6000 µƐ 的平均法向应变。这些高法向应变并不像 BGA 封装中的剪切应变那样表现出与中性点距离相同的依赖性。法向应变的大小与 CTE、弹性模量 (E)、封装尺寸和温度有着复杂的依赖关系。法向应变的增加使焊点受到剪切应变和轴向应变的组合影响,这反过来又使焊点在温度波动的条件下受到非比例循环载荷。
摘要 在高温和大电流条件下测试了晶圆级芯片规模封装 (WLCSP) 组件。在焊料/凸块下金属化 (UBM) 界面处观察到电迁移损坏以及加速扩散和金属间化合物生长。最终电气故障通常是由于 UBM 附近的再分布线 (RDL) 中产生空隙而发生的。温度升高、电流密度增加和 RDL 走线宽度减小会导致故障率增加。Ni UBM 焊盘和 Cu 柱结构的性能均优于 Cu UBM 焊盘。根据实验数据和其他已发表数据开发了基于 Black 方程的故障模型。然后使用该模型根据代表性现场使用条件制定加速测试和鉴定测试的推荐指南。关键词:WLCSP、电迁移。引言由于 WLCSP 外形小巧,已成为便携式产品应用中使用的 RF 降压转换器、相机闪光灯驱动器、背光驱动器和模拟开关等设备的流行封装。这些器件需要通过 BGA 焊点传输高达 2A 或更高的电流。由于电迁移导致的现场故障是限制给定器件最大额定电流的一个潜在因素。倒装芯片和 WLCSP 焊点中的电迁移故障是由于高电流密度驱动的扩散和金属间化合物反应在高温下加速而发生的 [1-34]。这些影响会产生空洞,这些空洞会随着时间的推移而打开和增长。随着空洞尺寸的增加,通过焊点的电阻会增加,最终出现开路。在大多数电迁移研究中,使用电流密度和温度的测试矩阵来比较设计或材料变量。测试通常会持续到给定支路中至少一半的单元发生故障,以便数据可以拟合对数正态分布或威布尔分布。一个典型目标是确定故障预测模型的常数,例如 Black 方程 [27]。
采用三维热电分析模拟了共晶SnAg焊料凸点在收缩凸点尺寸时的电流密度和温度分布。研究发现,对于较小的焊点,焊料中的电流拥挤效应显著降低。减少焊料时,热点温度和热梯度增大。由于焦耳热效应,凸点高度为144.7 lm的焊点最高温度为103.15℃,仅比基板温度高3.15℃。然而,当凸点高度降低到28.9 lm时,焊料中的最高温度升高到181.26℃。焊点收缩时会出现严重的焦耳热效应。较小焊点中焦耳热效应较强可能归因于两个原因,首先是Al走线的电阻增加,它是主要的热源。其次,较小凸块中的平均电流密度和局部电流密度增加,导致较小焊料凸块的温度升高。2009 年由 Elsevier Ltd. 出版。
认证 所有仪器和测量设备均根据 ISO 10012-l 和 ANSI/NCSL 2540-1(如适用)按照美国国家标准与技术研究所 (NIST) 可追溯标准进行校准。此处包含的所有内容均为 Samtec 的财产。未经 Samtec 事先书面批准,不得复制本报告的任何部分或全部内容。范围 执行以下测试:通过锡-银-铜 (SAC) 和锡-铅 (SnPb) 的热循环预测焊点可靠性和预期寿命。测试样本 对三组 SEAF/SEAM 连接器进行了评估,堆叠高度为 7 或 10 毫米: • 组 A:SAC,7 毫米堆叠(SEAF 5.0 毫米 + SEAM 2.0 毫米) • 组 C:SAC,10 毫米堆叠(SEAF 6.5 毫米 + SEAM 3.5 毫米) • 组 D:SnPb,10 毫米堆叠(SEAF 6.5 毫米 + SEAM 3.5 毫米) 可靠性预测 1.基于威布尔参数的下限值,在 25ºC 至 45ºC 和 25ºC 至 55ºC 循环的现场服务条件下计算预期寿命。2.现场使用周期计算为 6(周期/天)x 365.25(天/年)= 2191.5 周期/年。表 1a:C 组和 D 组(10mm 配对)在现场使用条件下的可靠性预测。
