3.2.1 方法论 ................................................................................................ 94 3.2.2 实验细节 ................................................................................................ 95 3.2.3 测试载体描述 ........................................................................................ 96 3.2.4 测试载体 1:回流曲线验证的影响 ........................................................ 96 3.2.5 测试载体 2:应变率验证的影响 ............................................................. 98 3.2.6 测试载体 3:CSH 验证的影响 ............................................................. 101 3.2.7 测试载体 4:空洞验证的影响 ............................................................. 104 3.2.8 测试载体 5:ATC 对焊点长期可靠性的影响 ............................................. 106
本报告是作为美国政府机构赞助的工作报告而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 — 在本研究中,我们制备了 SACX0307-ZnO 和 SACX0307-TiO 2 纳米复合焊膏。陶瓷增强体以 1wt% 的用量使用,其初级粒径在 50-200nm 之间。研究了焊点的焊接性能和微观结构。通过标准球磨工艺将纳米颗粒混合到焊膏中。回流焊接技术已用于制备不同焊料合金的焊点和铺展测试。通过剪切试验评估焊点,并制备横截面以通过扫描电子显微镜 (SEM) 研究金相性能。不同的陶瓷纳米颗粒对焊料合金的可焊性有不同的影响。在 TiO2 纳米颗粒具有更好的润湿性和机械强度的情况下观察到了最佳效果。微观结构研究表明晶粒细化明显,晶界/界面性能得到改善,这可能导致机械参数的增加。
• 详情请参阅 FADEC 国际服务信 SL-Fl-0020、S/B 73-0135 • 建议的软时间间隔为 30,000 小时或 6,000 个周期 • 大修中包含的关键可靠性服务公告和更换: – 降压系统单元 (PSU) 115V 断开保护 – 底盘安装脚角撑板拆除 – 数字处理模块 (DPM) 电可擦除可编程只读存储器 (EEPROM) 写保护 – 在中央处理单元侧的特定位置使用特定日期代码更换 DPM1 EEPROM – DPM3 焊点检查和 R28 重新定位 – 输入/输出模块焊点检查和粘合材料拆除
• 详情请参阅 FADEC 国际服务公告 S/B 73-0119 • 建议的软时间间隔为 5,000 次循环 • 大修中包含的关键可靠性服务公告和更换: – 压力系统模块 (PSM) C115/C116 电容器更换 – 继电器引线和接地“E”端子上的 PSM 回流焊点 – 主控制板 (MCB) MN4 和 MN76 球栅组件 (BGA) 更换(符合 S/B 73-0118) – MCB MN82 检查并在必要时更换 – MCB SOT23 封装设备焊点回流 – 将 AW7 MCB 升级到最新的 AW7 配置
摘要 目的——本文旨在研究在批量生产环境下使用七种低空洞无铅焊膏通过回流焊接组装的发光二极管 (LED) 的导热垫下焊点的空洞现象。设计/方法/方法——所研究的焊膏为 SAC305 型、Innolot 型或由制造商在 (SnAgCu) 合金基础上特别配制,并添加了一些合金元素,例如 Bi、In、Sb 和 Ti,以提供低空洞含量。使用 SnPb 焊膏 - OM5100 - 作为基准。由于行业实践中通常使用 LED 焊盘的焊膏覆盖率作为焊点中空洞含量的衡量标准。发现 – 发现使用 LMPA-Q 和 REL61 焊膏形成的焊点具有最高的覆盖率,且空洞含量最低,其特征是覆盖率平均值分别为 93.13% [标准差 (SD) = 2.72%] 和 92.93% (SD = 2.77%)。空洞直径达到平均值,LMPA-Q 为 0.061 毫米 (SD = 0.044 毫米),REL61 为 0.074 毫米 (SD = 0.052 毫米)。结果以直方图、绘图框和 X 射线图像的形式呈现。使用 3D 计算机断层扫描观察了一些选定的焊点。原创性/价值 – 使用 Origin 软件基于 2D X 射线图像进行统计分析。它们可以比较制造商推荐的低空洞的各种焊膏的特性。该结果可能对焊膏制造商或电子制造服务有用。
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
2 清华大学微电子研究所,北京 100084 1. 引言 焊接是电子产品组装中的一项重要技术。为了形成良好的焊点,焊料的选择非常重要。焊料的可焊性、熔点、强度和杨氏弹性模量、热膨胀系数、热疲劳和蠕变性能以及抗蠕变性能都会影响焊点的质量。共晶 Au80Sn20 焊料合金(熔点 280 C)已在半导体和其他工业中应用多年。由于一些优异的物理性能,金锡合金逐渐成为光电子器件和元件封装中最好的焊接材料之一。 2. 物理性能 Au80Sn20 的一些主要物理性能如表 1 所示,从中可以看出金锡焊料的优点如下:
使用瞬态热分析 (TTA) 研究不同 SAC + 焊料的热机械疲劳,并使用人工神经网络 (ANN) 进行预测。TTA 测量热阻抗,并允许检测焊料裂纹和材料界面的分层。使用七种不同焊料焊接到印刷电路板上的 LED 在被动空对空温度冲击测试中老化,每 50 次循环进行一次 TTA 测量,以热阻增加为故障标准。在测试条件下,SnAgCuSb 焊料比 SAC305 参考表现出最佳性能改进。除了通过累积故障曲线和威布尔图进行标准评估外,还研究了新的可靠性评估方法来评估单个 LED 焊点的可靠性。建立了一种混合方法来预测加速应力测试期间单个 LED 焊点的故障,该方法使用具有记忆的人工神经网络(特别是 LSTM)处理 TTA 数据,其中记忆允许充分利用测量历史。使用了两种 ANN 方法,即回归和分类。这两种方法都相当准确。从回归方法中获得的信息越多,需要使用问题要求的外部知识进行更多处理,而分类方法可以更直接地实施。结果证明了集成方法在评估焊点剩余使用寿命方面的优势。
1. Yunus, M. 等,空洞对 BGA/CSP 焊点可靠性的影响。微电子可靠性,2003 年。43 (12):第 2077-2086 页。2. Kang, SK 和 AK Sarkhel,电子封装的无铅 (Pb) 焊料。电子材料杂志,1994 年。23 (8):第 701-707 页。3. Menon, S. 等,电子行业中的高铅焊料(超过 85%):RoHS 豁免和替代品。材料科学杂志:电子材料,2015 年。26 (6):第 4021-4030 页。4. Ringgaard, E. 和 T. Wurlitzer,基于碱金属铌酸盐的无铅压电陶瓷。欧洲陶瓷学会杂志,2005 年。25(12):第 2701-2706 页。5. Su, L.-H. 等人,熔融 Sn/Cu 和熔融 In/Cu 对中的界面反应。冶金与材料学报 B,1997 年。28(5):第 927-934 页。6. Choi, S. 等人,铅污染对共晶 Sn-Ag 焊点的影响。焊接与表面贴装技术,2001 年。7. Wood, E. 和 K. Nimmo,寻找新的无铅电子焊料。电子材料杂志,1994 年。23(8):第 709-713 页。8. Mei, Z. 和 J. Morris,共晶 Sn-Bi 焊点的特性。电子材料杂志,1992 年。21 (6):第 599-607 页。9. Yang, C.、L. Wang 和 J. Wang,倒装芯片工艺过程中芯片中超低 k 材料的断裂。材料科学杂志:电子材料,2022 年。33 (2):第 789-799 页。10. Kang, SK 等人,微电子应用中使用的无铅焊料和焊点的微观结构和机械性能。IBM 研究与开发杂志,2005 年。49 (4/5):第 607 页。