在最初的三年范围内培养RCMI时,我们建立了一个跨学科网络,该网络由60多个研究人员组成,跨越了8个部门。这些跨学科的队列无缝合作,探索了TCM草药的未知地形和实践,以照亮慢性病管理,妇女健康和寿命促进的道路。我们一直在顶级期刊上发表,并率先将科学发现转化为斜度应用。我们与全球和区域合作伙伴的合作继续发展和加强,这可以通过我们积极参与国际论坛和座谈会以及代表团访问和研究之旅来证明。
在过去的几十年中,皮肤镜检查的流行度已大大增加,并且已经检查了多个病变。该设备采用放大倍率和偏振光来照亮病变的最小特征[3]。此外,当以非接触方式使用的方式使用更深刻的系统时,极化辐射几乎没有反射渗透表皮。它解释了传统的治疗性皮炎与纳米级的皮肤病学有关人类视力看不见的形态特征的联系[4]。由于研究的研究量有限,因此集中在棕榈底疣,玉米和升炉中的文献结局中,在解析和无效的情况下查看皮肤镜的水平。
本课程侧重于全球英语文学和文化领域,分析中心和英国帝国企业的外围所产生的文本。主要目的是双重的:使学生熟悉作家及其作品的选择,并使学生对文学文本的历史,社会政治和文化背景提高机敏性。我们将询问这些作品如何照亮影响并继续塑造当今全球化而不是平等世界的力量。将特别关注种族和性别的复数历史,概念,关系,网络和等级制度。在第一学期,该课程旨在向学生介绍一系列二十世纪初期的文本,并发展他们对塑造“英语”概念的影响和辩论的理解。
除了保护我们项目的足迹中的生物多样性外,我们还积极贡献生物多样性和保护原因,并有助于推动行业研究和最佳实践。例如,我们正在安装,测试和研究创新技术,以用紫外线(人类看不见)照亮我们的Sunzia传输线,以提高该线对大型水禽的可见性。我们还支持与美国合作的Sandhill Crane飞行行为的持续研究鱼类和野生动物服务局,并为国际蝙蝠保护国际的努力做出了贡献,以计划数千种龙舌兰,以使蝙蝠,鸟类和其他野生动植物受益。
应将对应关系发给BSA(balpreet.singh.ahluwalia@uit.no)结构化照明显微镜(SIM),可在高速下对亚细胞结构进行实时细胞超分辨率成像。目前,Linear Sim使用自由空间光学器件以所需的光图形来照亮样品,但是这种布置容易错过一致性,并为显微镜增加了成本和复杂性。在这里,我们提出了一种基于光子芯片的替代2D SIM方法,其中显微镜中的常规玻璃样品载玻片被平面光子芯片所取代,该平面光子芯片既可以固定并照亮样品。光子芯片将SIM的光照明路径的足迹降低到约4x4 cm 2。芯片上的一系列光学波导以不同的角度创建了站立的干扰模式,从而通过evanevanevanecent磁场照亮了样品。高折射率氮化硅波导允许在成像空间分辨率中增强2.3倍,超过了SIM的通常2x极限。总而言之,CSIM提供了一种简单,稳定且负担得起的方法,用于在大型视野上执行2D超分辨率成像。光学显微镜的空间分辨率通过衍射有效地限制了可实现的分辨率横向约250 nm,而轴向为500 nm的1,2。超级分辨率荧光显微镜的出现(通常称为纳米镜检查)证明了欺骗衍射极限的能力,将显微镜的横向分辨率向下延伸到只有几个纳米3。因此,超分辨率成像的下一个飞跃可以通过增加纳米镜方法的吞吐量来实现。在现有的光学纳米镜检查方法4-8中,结构化照明显微镜(SIM)9,10对于大多数明亮的荧光团作品。,而不是在SIM中照亮样品,而是在SIM中照亮了正弦激发模式,可以照亮样品,并在摄像机上捕获荧光发射。通常使用样品平面上的两个或三个梁的干扰来生成正弦激发光。通过乘法在频率空间中代表卷积,混合了两个函数的空间频率,在样品平面上结合了照明和对象函数。以这种方式,由于频率下转换与所得荧光发射为Moiré边缘模式,因此在物镜的通过频带的通过频带下方可以提供高频,未解决的内容。要从Moiré模式中提取高频含量,需要三到五个相移的结构化照明才能改善沿一个轴的分辨率。对于各向同性分辨率,必须重复该过程的激发模式的3个方向(角度),对于2D(3D)SIM重构,总共有9(15)个图像。由于SIM只需要9(15 for 3d)图像即可在广泛的视野上创建一个超分辨率图像,因此此方法本质上是快速的,这使其成为实时细胞光学纳米镜检查的最流行方法之一。,尽管STED和SMLM方法在单个单元格的水平上提供了出色的图像,但是当需要许多细胞的高速图像以建立统计影响时,这些技术会遭受低吞吐量。在常规模拟中,照明和开发高分辨率方法,例如刺激激发耗竭(STED)显微镜技术4,5和单分子定位显微镜(SMLM)6-8,从而使分辨率降低到几十纳米量,在生命科学中发现了新的发现可能性。在现有的超分辨率显微镜技术中,SIM提供了最快的时间分辨率,并且与标准标签和低光毒性的兼容性SIM方法指向实际高通量纳米镜检查方向。为了充分利用快速SIM成像技术的实用性,可实现的空间分辨率,方法的吞吐量和SIM的系统复杂性需要改进。
图2:a)沉积在银上的J-聚集膜的石版画区的暗场显微镜图像。该图案的设计包含圆形光漂白区域(CPA),直径范围为1至40 µm。相邻漂白区域之间的最小分离距离为20 µm,可以彼此隔离。样品中重复数十倍的模式,以测试实验结果的重复性。在40 µM CPA中,我们代表激光激发和视野。b)CPA的素描被聚焦激发的中心照亮。激光激发后,QD会因刺激模式在样品平面中传播而衰减。孵化的区域对应于激发发射器的体积,我们为模拟设定了非零的化学潜力。
摘要 全球清洁能源服务的提供是 21 世纪面临的一项关键挑战。为了提供此类服务,大型太阳能发电场的数量和规模显然将继续增长。原则上,超轻膜轨道太阳能反射器可以在一天中的关键黎明/黄昏时段照亮大型太阳能发电场,从而提高地面太阳能的利用率。关键优势在于,只需要将相对较小的质量运送到地球轨道。本文将讨论与此类太空能源服务的开发、部署和运营相关的技术挑战。本文将讨论业务发展模式以及监管问题,最后将提出综合技术示范路线图。