应将对应关系发给BSA(balpreet.singh.ahluwalia@uit.no)结构化照明显微镜(SIM),可在高速下对亚细胞结构进行实时细胞超分辨率成像。目前,Linear Sim使用自由空间光学器件以所需的光图形来照亮样品,但是这种布置容易错过一致性,并为显微镜增加了成本和复杂性。在这里,我们提出了一种基于光子芯片的替代2D SIM方法,其中显微镜中的常规玻璃样品载玻片被平面光子芯片所取代,该平面光子芯片既可以固定并照亮样品。光子芯片将SIM的光照明路径的足迹降低到约4x4 cm 2。芯片上的一系列光学波导以不同的角度创建了站立的干扰模式,从而通过evanevanevanecent磁场照亮了样品。高折射率氮化硅波导允许在成像空间分辨率中增强2.3倍,超过了SIM的通常2x极限。总而言之,CSIM提供了一种简单,稳定且负担得起的方法,用于在大型视野上执行2D超分辨率成像。光学显微镜的空间分辨率通过衍射有效地限制了可实现的分辨率横向约250 nm,而轴向为500 nm的1,2。超级分辨率荧光显微镜的出现(通常称为纳米镜检查)证明了欺骗衍射极限的能力,将显微镜的横向分辨率向下延伸到只有几个纳米3。因此,超分辨率成像的下一个飞跃可以通过增加纳米镜方法的吞吐量来实现。在现有的光学纳米镜检查方法4-8中,结构化照明显微镜(SIM)9,10对于大多数明亮的荧光团作品。,而不是在SIM中照亮样品,而是在SIM中照亮了正弦激发模式,可以照亮样品,并在摄像机上捕获荧光发射。通常使用样品平面上的两个或三个梁的干扰来生成正弦激发光。通过乘法在频率空间中代表卷积,混合了两个函数的空间频率,在样品平面上结合了照明和对象函数。以这种方式,由于频率下转换与所得荧光发射为Moiré边缘模式,因此在物镜的通过频带的通过频带下方可以提供高频,未解决的内容。要从Moiré模式中提取高频含量,需要三到五个相移的结构化照明才能改善沿一个轴的分辨率。对于各向同性分辨率,必须重复该过程的激发模式的3个方向(角度),对于2D(3D)SIM重构,总共有9(15)个图像。由于SIM只需要9(15 for 3d)图像即可在广泛的视野上创建一个超分辨率图像,因此此方法本质上是快速的,这使其成为实时细胞光学纳米镜检查的最流行方法之一。,尽管STED和SMLM方法在单个单元格的水平上提供了出色的图像,但是当需要许多细胞的高速图像以建立统计影响时,这些技术会遭受低吞吐量。在常规模拟中,照明和开发高分辨率方法,例如刺激激发耗竭(STED)显微镜技术4,5和单分子定位显微镜(SMLM)6-8,从而使分辨率降低到几十纳米量,在生命科学中发现了新的发现可能性。在现有的超分辨率显微镜技术中,SIM提供了最快的时间分辨率,并且与标准标签和低光毒性的兼容性SIM方法指向实际高通量纳米镜检查方向。为了充分利用快速SIM成像技术的实用性,可实现的空间分辨率,方法的吞吐量和SIM的系统复杂性需要改进。
主要关键词