摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
在高温下表现出结构稳定性的难治性金属纳米结构引起了人们对新兴应用的巨大兴趣,例如热质量,热伏耐托(TPV),太阳能热,热电,热电,,太阳能电气,太阳能型生成应用。[1-19]然而,尽管散装金属的熔点熔点高得多,但这些金属制成的纳米结构在高温下比其散装柜台更容易受到形态变化的影响。这主要是由于较大的表面量比导致纳米结构的表面能增加[20],从而驱动了与环境气体和质量扩散的氧化还原反应,从而导致结构衰减。这些纳米结构的固有的热实例阻碍了其在高于1200°C的温度下的靶向应用[21–25]此外,高温等离子/光子应用所需的材料是高度挑战性的。在高温下,光谱选择性和结构稳定性的结合仅在一小部分可用的材料选择中。
由于开发新化合物并确定其性能是昂贵且可能危险的,因此有必要开发一个模型来预测分子特性,而无需合成和实验测试。表示化合物的两种系统方法是通过分子结构的示意图和简化的分子输入线 - 进入系统(Smiles)。在这项研究中,这些表示分别用于训练两个神经网络模型,一个卷积神经网络(CNN)和一个经常性神经网络(RNN),以预测化合物的熔点。通过将化合物表示为结构的图像,CNN在拟合给定数据的拟合时不成功,似乎在给定数据的平均熔点附近保持恒定。然而,通过将化合物表示为系统生成的文本字符串,RNN成功地拟合了数据,总体趋势类似于实际趋势,平均绝对误差较低。但是,与结构图数据不同,用于RNN的微笑数据不包含方向信息。对于将来的研究,可能可以将两种表示形式结合起来,以达到更准确的预测模型。
化石燃料已在社会各个方面广泛使用。然而,近年来,由于世界化石能源在世界范围内的不足供应,太阳能的有效使用和新的储能材料的准备已成为全球问题。1 - 4全球经济发展和人口增长将导致持续的能源危机。太阳能是世界上最有希望的可再生能源之一,但其应用受到许多特征,例如间歇性和无法控制的特征。幸运的是,相变材料(PCM)可以通过改变相位状态来存储潜热,并在需要时释放能量,5,6和太阳能和PCM的组合创建了一个非常适合增加太阳能利用率的潜热存储系统。当温度达到PCM的熔点时,PCM可以融化以潜热的形式储存热量,当温度低于熔点以下时,PCM可以凝固以将潜热释放回热量存储层。既可以在白天和夜间之间降低热存储系统的最高温度差异,又可以增加太阳能热储存系统的热量存储能力。因此,已广泛研究了适合太阳能的相变材料。7 - 11
WC-Co 金属陶瓷,也称为硬质合金,是摩擦学应用中最广泛使用的硬质材料。W 和 Co 价格的不断上涨以及经济方面的不利因素提醒人们 WC 和 Co 需要被取代。WO 3 是一种有毒物质,在碳化钨应用过程中在空气中形成,在 750°C 以上升华,在室温下可溶于水。Co 的取代还受到其活性氧化物 Co 3 O 4 的潜在致癌性质的驱动。铌是一种与钨类似的难熔金属,可以部分甚至完全取代硬质合金中的钨。NbC 是一种熔点为 3522°C 的难熔碳化物,它具有热稳定性,在 Fe、Ni 和 Co 中的溶解度非常低。此外,相关氧化物 Nb 2 O 5 具有热力学稳定性,熔点为 1512°C。由于 Co 和 NbC 的润湿性相对较差,在 WC-Co 中用 NbC 替代 WC 必然需要同时替换 Co 粘合剂。NbC-Ni 和 NbC-Fe 或 NbC-Mo 基材料将成为 WC-Co 材料的“非关键且无害”替代品。
Pearlstick ™ 47-60/01 是基于聚醚的热塑性聚氨酯,以半透明颗粒的形式供应。具有低熔点和出色的透明度。该产品具有出色的柔韧性和弹性、耐水解性和耐化学性、高透气性和易加工性。硬度极低,活化温度低,可避免损坏基材。高抗微生物侵蚀性。
物理状态:纯色:白色。外观:薄片。分子质量:118.09 g/mol气味:无味。气味阈值:不可用的熔点:120°C冰点:不适用的沸点:不可用的易燃性:无易燃。下爆炸极限:不适用的上部爆炸极限:不适用闪点:> 100°C自动点击温度:不适用分解温度:> 165°C pH:9.5 - 10.5
颜色:绿色无味气味:不适用的熔点/冻结点:不适用的沸点或起点和沸腾区域:不适用的炎症:不适用的下爆炸限制极限:不适用的上部爆炸极限:不适用的爆炸点:不适用的Zündtttttpperativalsevipation coble oppainse noceptable kindemplosity decem decem decem decem decem decem decem decem decem:水溶性:不溶性
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息