到了 20 世纪 30 年代,飞机和降落伞的广泛使用使得通过降落伞将轻型步兵部署到敌后成为可能。陆军野战手册 FM 3-90(空降和空中突击作战)的附录 C 涉及空降作战和伞兵。4 伞兵作战在“空降作战”一节中讨论。空降作战的战术梯队包括:突击梯队、后续梯队和后卫梯队。在占领确定空中前沿的目标后,突击梯队确保空降部队、装备和补给的畅通无阻。后续梯队可以包括轻型和重型联合部队。根据指挥官的决定,重型武器可以通过降落伞或空降方式投送。由于防空技术的进步,到 20 世纪 50 年代末,大规模部署空中突击部队的风险越来越大。同时,燃气涡轮运输机运输能力的提高使得空运轻型坦克和自行火炮等重型装备成为可能。随着先进降落伞货物运输系统(低空降落伞提取系统、逆行火箭等)的发展,空降部队增加了一些重型组织单位(例如装甲营),从而提高了战斗力和机动性。从 1980 年代开始,美国第 82 空降师(
关键词:控制系统、燃气涡轮发动机、液力机械系统、全权限数字电子控制 (FADEC)、数字电子发动机控制 (DEEC) 1.0 简介 任何发动机控制系统的目标都是让发动机在给定条件下以最高效率运行。此任务的复杂性与发动机的复杂性成正比。从历史上看,喷气发动机一直由液力机械控制系统控制,该系统由飞行员控制的简单机械连杆组成。随着发动机变得越来越复杂,控制信号越来越多,对性能和功能的要求越来越高,电子控制系统应运而生 [1]。当今用于飞机推进的现代航空发动机在过去 60 年中发展成为现在的形式,控制技术在提高性能、可靠性、使用寿命和安全性方面发挥着关键作用。今天,所有现代航空发动机都由全权限数字电子控制 (FADEC) 系统或电子和液力机械系统的组合控制。在许多这些系统中实现的控制功能并没有太大变化。仅使用燃料流量进行速度控制并限制瞬态过程中的流量的原理,就像在第一套液压机械系统中一样
激光增材制造,通常称为激光3D打印(L3DP),在近净成形制造以及修复由单晶或定向凝固高γ′含量(> 60 %)镍基高温合金组成的燃气涡轮发动机部件方面具有巨大潜力[1]。根据送粉策略,L3DP可分为直接能量沉积(DED)或粉末床熔合(PBF)。由于热源集中且热输入减少,在DED和PBF过程中都会出现与构建方向平行的陡峭温度梯度,从而有利于外延晶体沿基板金属取向生长。同时,在DED和PBF工艺的快速凝固中,可以生成长度从纳米到亚毫米的异质微观结构[2-5]。这些是通过传统制造方法无法实现的。 L3DP 固有的高冷却速度严重抑制了二次枝晶臂的生长,因此在缺乏晶体取向知识的情况下很难区分胞状结构和枝晶 [6]。因此,术语“胞状结构”通常用于表示 3D 打印合金中的胞状/枝晶结构。细胞结构
航空航天燃气涡轮发动机 (GTE) 是复杂的机器,必须对其进行监控和维护,以确保长期可靠运行 [1]。最大限度提高可靠性的一个关键概念是基于条件而不是基于计划的维护 [2]。这需要对发动机状况进行准确评估,但这可能很难获得。发动机状况通常相对于机队中的类似资产以及功能性能阈值进行评估,并且需要维护决策者具备专业的工程知识。传统上,评估发动机性能的有限人力资源由小型数据快照和故障模式特定功能工程支持。较大的数据包是临时从在役状态收集的,但这在后勤上成本高昂,并且通常仅限于观察到运行中断的情况。需要新的方法来支持更高效的在役操作。从发动机上放置的各种不同传感器获得的数据是评估发动机状况的主要资源。然而,由于传感器数量众多、飞行中带宽限制和机载存储限制,大多数当前系统无法将所有数据返回地面进行分析 [3]。因此,有必要
航空燃气涡轮发动机的发展对发动机控制系统提出了越来越高的要求,以提高推力并改善燃油消耗。这些要求导致了电子控制系统的广泛使用。这种系统的早期版本采用了监控概念,于 20 世纪 70 年代推出,目前在运行的许多飞机上都能找到这种系统。目前运行的 JAS 版本采用了这种概念。然而,监控概念并不能完全满足大多数现代发动机的要求,这导致了 20 世纪 80 年代全权数字电子控制 (FADEC) 概念的出现。 FADEC 系统控制发动机所需的所有功能,并引入了许多改进,例如:(i) 可以实施现代控制理论中的复杂技术,这些技术既可以提高性能,又可以提高可靠性,(ii) 由于有限使用流体力学而减轻重量,以及 (iii) 可以实施内置维护支持,从而降低维护成本并提高系统可靠性。正如这些示例所示,FADEC 支持提高性能和可靠性并降低总成本的努力。FADEC 系统目前在许多飞机上运行,例如:新型军用飞机 F-18E/F 和欧洲战斗机以及民用飞机空客 320、321 和波音 777。
对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
开发用于涂层和结构部件的新型高温材料是提高燃气涡轮发动机等设备的效率和可持续性的重要课题。NiAl 基合金是一种很有前途的新型高温材料。在本研究中,研究了具有不同 Cr 和 Ta 含量的 NiAl-Ta-Cr 合金的微观结构和显微硬度。通过基于激光的定向能量沉积利用原位合金化方法通过混合元素 Ta 和 Cr 以及预合金 NiAl 粉末制造了分级样品。进行了热力学计算以预先设计合金成分。采用基材的感应预热来应对因高脆性而导致的开裂问题。结果表明,开裂随预热温度的升高而减少。然而,即使在 700 ◦ C 时,开裂也无法完全消除。扫描电子显微镜、X 射线衍射和电子背散射衍射表明,在 NiAl-Ta 和 NiAl-Cr 合金中形成了 B2-NiAl、A2-Cr 和 C14-NiAlTa 相。对于 NiAl-Ta-Cr 成分,观察到计算和实验之间相形成的偏差。在 NiAl-Ta 和 NiAl-Ta-Cr 系统中,共晶成分在 14 at.-% Ta 时可获得最大硬度值,最大值高于 900 HV0.1。
使用计算流体动力学优化航空推进系统的设计对于提高效率和减少污染物和噪音排放至关重要。如今,在这个优化和设计阶段,可以对燃气涡轮发动机的各个部件进行有意义的非稳态计算。然而,这些模拟通常彼此独立进行,并且只在接口处共享平均量,以最大限度地减少部件之间的影响和相互作用。与目前最先进的技术相比,这项工作展示了一个 360 度方位角大涡模拟,其中超过 21 亿个 DGEN-380 演示发动机的单元,在起飞条件下包围一个完全集成的风扇、压缩机和环形燃烧室,这是实现整台发动机高精度模拟的第一步。为了进行如此具有挑战性的模拟并降低计算成本,初始解决方案是从每个组件的独立扇区模拟中插值的。在方法方面,集成网格分几个步骤生成,以解决潜在的机器相关内存限制。然后观察到,与独立模拟相比,360 度计算收敛到一个工作点,零维值差异小于 0.5%,整体性能在设计的热力学循环的 1% 以内。使用所提出的方法,收敛
13.摘要(最多 200 个字)本报告记录了一项系统工程和设计顶点项目,该项目由总舰船系统工程 (TSSE) 教员指导,由海军研究生院 TSSE 项目的学生承担,历时两个学期。它重新审视了现代航空母舰的基本设计和运行,假设有短距起飞和垂直着陆 (STOVL) 飞机,采用燃气涡轮船舶推进,并提供强大的能力来支持人道主义行动。在此处报告的设计研究中,作者采用系统工程方法进行全新的航母设计,这可能最适合下一代航空母舰的要求。主要目标是提供一艘满足现有尼米兹级航母所有当前任务要求的舰船,但平台的生命周期成本要低得多。最终成果是一艘基于“超级岛”概念的舰船;大型岛屿结构,可为飞机加油、重新武装以及其他主要功能提供直通“维修站”。其他主要创新领域包括:武器处理、信息处理和分发、工程布局和人员配备。报告概述了主要船舶系统,并详细讨论了选定的设计领域,以说明对实现设计目标影响最大的系统。14.主题术语船舶设计、航空母舰、STOVL、短距起飞垂直着陆;燃气轮机 15.页数 285
该级潜艇比 903A 型潜艇大得多,其长度为 241 米,而 903A 型潜艇为 178.5 米(约长 35%),排水量估计为 48,000 吨,而 903A 型潜艇为 23,369 吨。901 型潜艇采用燃气涡轮发动机,最高时速可达 25 节,并且配备了加油站,其中左舷三个,右舷两个(详情见附录 A)。这是因为中国的航空母舰的舰岛位于右舷;中国的航母不是核动力的,因此航母本身和飞机都需要燃料。正如安德鲁·埃里克森和克里斯托弗·卡尔森之前在《简氏海军国际》中所指出的那样,901 型潜艇看起来与美国海军补给级潜艇几乎完全相同。 5 不过,901 型潜艇似乎更注重燃料和补给,因为它只有一个干货运输站,而补给级潜艇每侧有三个干货运输站(用于协助弹药的补给)。 6 这是一个重要的区别——901 型潜艇似乎不太注重弹药补给,而且补给能力肯定较差。简氏预计每个航空母舰战斗群至少有一艘 901 型潜艇,但更可能的比例是 1.5:1,这样既可以实现更可持续的作战节奏,也可以将 901 型潜艇与其他水面战舰和两栖作战能力结合起来使用。