Algonquin村庄于1834年定居,塞缪尔·吉利安(Samuel Gillian)是麦克亨利县的第一个定居者。其他早期定居者是康沃尔博士,普鲁姆利博士,埃利·亨德森,亚历克斯·道森和威廉·杰克逊。村庄在早期几次更改了名字;名称包括康沃尔渡轮,康沃尔维尔和奥斯科拉。Algonquin这个名字终于在1847年被选为塞缪尔·爱德华兹(Samuel Edwards)的建议,作为他曾经拥有的一艘船的同名。该村庄成立于1890年,目睹了商业和休闲贸易。Algonquin是芝加哥居民最喜欢的度假胜地。坐落在福克斯河谷的山麓丘陵中,Algonquin被称为“福克斯河谷的宝石”。第一个乡村大厅于1906年在南大街2号建造,多年来,为社区提供消防,图书馆和学校服务,并容纳市政办公室。该建筑物是乡村大厅,直到1996年新村庄大厅完成。原始建筑物现在称为历史村庄大厅,是社区设施和会议地点。Algonquin历史上的一个亮点是1906年至1913年,当时举行了Algonquin Hill攀登。该活动是在美国举行的最早的有组织的汽车赛车活动之一。Algonquin当时有大约600名居民的人口,一年一度的爬山攀爬将使人群超过25,000。在伊利诺伊州最大的生活方式中心Algonquin Commons开业时,2004年秋天获得了巨大的商业成功。多年来,阿尔冈昆(Algonquin)发展成一个不断发展壮大的社区,其住宅和商业发展和不断扩大的工业/商业领域的坚实基础。Algonquin的人口截至2020年的人口普查为29,700,自1990年的人口普查以来,人口已增加了一倍以上,该人口为11,663。这个村庄已经从一个小型农村农业社区发展到麦克亨利和凯恩县的充满活力的城市领导人。
课程代码:CSE2351 学分:03 课程目标:开发基于语义和上下文感知的系统,以获取、组织流程、共享和使用嵌入在多媒体内容中的知识。研究旨在最大限度地实现整个知识生命周期的自动化,并实现 Web 资源和服务之间的语义互操作性。机器人领域是一个多学科领域,因为机器人是一个极其复杂的系统,包括机械、电气、电子硬件和软件以及与所有这些相关的问题。模块-I 人工智能问题、人工智能基础和人工智能智能代理的历史:代理和环境、理性概念、环境性质、代理结构、问题解决代理、问题表述。模块-II 搜索- 搜索解决方案,统一搜索策略 - 广度优先搜索、深度优先搜索。使用部分信息进行搜索(启发式搜索)爬山法、A*、AO* 算法、问题简化、游戏对抗搜索、游戏、极小-最大算法、多人游戏中的最佳决策、游戏中的问题、Alpha-Beta 剪枝、评估函数。模块 III 知识表示问题、谓词逻辑-逻辑编程、语义网络-框架和继承、约束传播、使用规则表示知识、基于规则的推理系统。不确定性下的推理、概率回顾、贝叶斯概率干扰和邓普斯特沙弗理论。模块 IV 一阶逻辑。一阶逻辑中的推理,命题与一阶推理,统一与提升,前向链接,后向链接,解析,从观察中学习,归纳学习,决策树,基于解释的学习,统计学习方法,强化学习。模块-V 专家系统:- 简介,基本概念,专家系统的结构,专家系统中的人为因素,专家系统的工作原理,专家系统解决的问题领域,专家系统的成功因素,专家系统的类型,专家系统与互联网交互,知识工程,知识范围,困难,知识获取方法,机器学习,智能代理,选择合适的知识获取方法,人工智能中的社会影响推理,规则推理,框架:基于模型的推理,基于案例的推理,解释和元知识推理,不确定性表示不确定性。
参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
不知情的搜索策略:问题决定了图和目标,但没有决定从边界中选择哪条路径。这是搜索策略的工作。搜索策略指定从边界中选择哪些路径。通过修改边界路径选择的实施方式可以获得不同的策略。 • 无信息搜索策略 – 亦称“盲目搜索”,无信息搜索策略不使用关于目标节点的可能“方向”的信息 – 无信息搜索方法:广度优先、深度优先、深度限制、均匀成本、深度优先迭代深化、双向 • 信息搜索策略 – 亦称“启发式搜索”,信息搜索策略使用关于领域的信息(尝试)(通常)朝着目标节点的大致方向前进 – 信息搜索方法:爬山法、最佳优先、贪婪搜索、束搜索、A、A* 评估搜索策略 完整性 保证只要存在解决方案就能找到解决方案 时间复杂度 找到解决方案需要多长时间(最坏或平均情况)?通常以扩展的节点数来衡量 空间复杂度 算法使用了多少空间?通常以搜索期间“节点”列表的最大大小来衡量 最优性/可接受性 如果找到解决方案,是否保证它是最优的?也就是说,它是不是成本最小的那个? 深度优先搜索 第一个策略是深度优先搜索。在深度优先搜索中,边界就像一个后进先出的堆栈。元素一次一个地添加到堆栈中。任何时候选择并从边界上移除的元素都是最后添加的元素。 算法: 如果初始状态是目标状态,则退出并返回成功 否则,执行以下操作,直到发出成功或失败的信号: 生成初始状态的后继 E。 如果没有后继,则发出失败信号。 调用深度优先搜索,以 E 作为初始状态。 返回成功,表示成功。否则继续此循环。 DFS 的属性 如果已知解决方案路径很长,DFS 就不会花时间在图中搜索大量的“浅”状态。但是,DFS 可能会在图的深处“迷失”,错过通往目标的短路径,甚至陷入无限循环。 DFS 的优点:DFS 需要的内存较少,因为只存储当前路径上的节点。偶然情况下,DFS 可能根本不需要检查太多的搜索空间就能找到解决方案。广度优先搜索在广度优先搜索中,边界被实现为 FIFO(先进先出)队列。因此,从边界选择的路径是最早添加的路径。这种方法意味着从起始节点开始的路径是按照路径中弧数的顺序生成的。在每个阶段选择一条弧数最少的路径。广度优先搜索在以下情况下很有用 空间不是问题; 你想找到包含最少弧的解决方案;