摘要。本研究讨论了使用两个示例图像在照明和面部姿势方面的示例图像中实施用于面部检测的计算机视觉技术。开发的系统结合了Viola-Jones算法和卷积神经网络(CNN),以增强针对照明和面部取向变化的弹性。实验结果即使只有两个样本图像也显示出很高的精度。这项研究还开发了处理极端照明条件的预处理技术,并使用Python和OpenCV证明了有效的实施。关键字:面部检测,Viola-Jones,CNN,OpenCV摘要。本研究讨论了使用两个示例图像在照片中进行面部检测的计算机视觉技术的实施,这些示例图像具有不同的照明和面部姿势。系统开发的系统结合了中提琴和卷积神经网络(CNN)算法,以增加对照明和面部取向变化的抗性。实验结果表明,即使仅使用两个示例图像,它也显示出高度的准确性。这项研究还开发了预处理技术,以使用Python和OpenCV来克服极端的照明条件和实施效率。关键字:面部检测,Viola-Jones,CNN,OpenCV 1。简介
高维纠缠的光状态为量子信息提供了新的可能性,从量子力学的基本测试到增强的计算和通信效果。在这种情况下,自由度的频率将鲁棒性的资产结合在一起,并通过标准的电信组件轻松处理。在这里,我们使用集成的半导体芯片来设计直接在生成阶段的频率键入光子对的波函数和交换统计,而无需操作后。量身定制泵束的空间特性,可以产生频率与年轻相关,相关和分离状态,并控制光谱波函数的对称性,以诱导骨气或费米子行为。这些结果是在室温和电信波长下获得的,开放有希望的观点,用于在整体平台上使用光子和光子的量子模拟,以及利用反对称高度高维量子状态的通信和计算方案。
随着信息技术迈向大数据时代,传统的冯·诺依曼架构在性能上显示出局限性。计算领域已经在应对访问内存所需的延迟和带宽(“内存墙”)以及能量耗散(“电源墙”)方面遇到了很多困难。这些具有挑战性的问题,例如“内存瓶颈”,要求进行大量的研究投资来开发下一代计算系统的新架构。脑启发计算是一种新的计算架构,为人工智能计算提供了一种高能效和高实时性的方法。脑启发神经网络系统基于神经元和突触。忆阻器件已被提议作为创建神经形态计算机应用的人工突触。在本研究中,对后硅纳米电子器件及其在脑启发芯片中的应用进行了调查。首先介绍了神经网络的发展,回顾了当前典型的类脑芯片,包括以模拟电路为主的类脑芯片和全数字电路的类脑芯片,进而引出了基于后硅纳米电子器件的类脑芯片设计。然后,通过对N种后硅纳米电子器件的分析,阐述了利用后硅纳米电子器件构建类脑芯片的研究进展。最后,对基于后硅纳米电子器件构建类脑芯片的未来进行了展望。
图 1:扩展的多尺度模型。组织尺度:脑切片中 36 · 10 3 个神经元(粉色圆圈)中的几个浸没在浴槽中;神经胶质细胞未明确建模,而是表示为每个 ECS 体素中的汇场。细胞尺度:每个神经元都有离子通道、2 个共交换器;Na + /K + 泵(星号表示 ATP/O 2 依赖性)离子在每个神经元内混合均匀(无细胞内扩散)。蛋白质尺度:表格(右)显示控制神经元和神经胶质细胞场中内在机制活动的物种。[离子] 尺度:离子根据菲克定律在 ECS 体素之间扩散,扩散系数见表 1。
粉末因子可以定义为打破岩石单位体积或吨(t)所需的爆炸物数量(kg)。通过爆破岩石的前景的特征是爆炸物的特定消费。在过去的几十年中,研究人员提出了几种精确的方法,以预测爆炸操作中的粉末因子或特定电荷,而不是通过试验爆炸。该领域的研究集中在岩体质量特性,爆破材料和爆破几何形状之间的关系上,以建立粉末因子。同样,已经研究了在洞穴理论中体现的特定能量和粒径之间的相互作用,而粒径较少依赖于当地条件。在本文中,已经审查了基于经验和洞穴理论建模的粉末因子估计方法,以及在表面基准爆破和地下隧道操作中的机器学习方法。还讨论了完整岩石特性对粉末因子分配的影响以及粉末因子选择对爆破后条件的影响。最后,在这方面指出了粉末因子估计中遇到的常见挑战。
我们研究了石墨烯型纤维中磁性边缘具有磁边缘的热电效应。分别采用静态的动态均值轨道理论,我们首先表明磁力出现在曲折边缘,用于库仑相互作用的窗口,随着量的大小增加,磁磁性显着增加。然后,我们在非平衡绿色功能方法的框架中使用Landauer形式主义来计算磁性六边形石墨烯池中的自旋和电荷电流,通过改变连接温度的不同量尺寸。虽然在非磁性封闭式石墨烯中,温度梯度驱动电荷电流,但我们观察到具有磁性锯齿形边缘的六边形石墨烯纤维的显着旋转电流。特别是,我们表明,在六角形的“元”配置中,受到弱库仑相互作用的约束,纯旋转电流只能由温度范围内的温度梯度驱动,这对于设备应用来说是有希望的。发现较大的平流可以产生更大的库仑相互作用的窗口,其中这种自旋电流是由磁性曲折边缘诱导的,并且电流的较大值。
我在此提交一篇由 Audrey E. Birdwell 撰写的论文,题为“胰蛋白酶抑制剂在叶片中表达以阻止大豆食草的可能性”。我已检查了该论文的最终电子版形式和内容,并建议接受该论文,以部分满足植物科学专业理学硕士学位的要求。
1数据科学研究所,应用科学与艺术大学瑞士西北大学(FHNW),Bahnhofstrasse 6,5210 Windisch,瑞士windisch,电子邮件:andrea.battaglia@fattaglia@fhnw.ch 2 27,8039瑞士苏黎世3地球和太空科学学院,北京大学,北京大学,100871年,中国公关4物理研究所,大学Plats 5,8010 Graz,Austria,奥地利5 Skolkovo科学技术研究所,Bolshoy Bowlevard 30,Bld。1,121205俄罗斯莫斯科6号太阳能和环境研究的讲座天文台,格拉兹大学,坎泽尔霍时代19,9521,奥地利特雷芬7莱布尼兹莱布尼兹天体物理学研究所Potsdam(AIP) Daccó”,Universitàdellasvizzera Italiana,通过Patocchi 57,6605瑞士Locarno,瑞士9 Physikalisch-MeTEOROLOGICALIOG OBSEROLOGIOL PAVOSATOR DAVOS,世界辐射中心,7260 DAVOS DORF,瑞士DAVOS DORF,瑞士10号太空科学实验室,加利福尼亚大学7 Gauss University,7 Gauss Way,94720 berkeley,Ucarkeley <
使用三重晶体X射线衍射研究了光子退火对硼掺杂CZ-SI晶状体晶体结构中变形的影响。具有卤素灯灯(光子退火模式)和快速热退火的双面抛光硅晶片的整个表面的常规退火产生压缩变形。在相对较低的晶圆温度下(小于55°C),使用特殊的光电板将多个分离的晶圆区域(局部光子退火模式)提供局部退火,可产生拉伸变形。但是,如果退火晶片的反向侧面包含机械固定层,则不会观察到这种效果。已经提出了一种解释实验结果的机制,可用于合成光电转换器结构中的电荷泵。
agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com, bcharles.lee@sksiltron.com, candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com, dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、 dtawhid.rana@sksiltron.com
